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1. Introduction 

No need to remind the importance of heat over history, temperature measurement has 

also been a great concern. Being Galileo in 1593 the first one to attempt the design of 

today’s thermometer, it seems unlikely that the physics behind temperature was 

understood in those days. Neither Newton with his glass prism experiment, first one 

introducing the term spectrum, got to notice the heat beyond the red. It was not until 

1800 when Herschel repeated the famous prism experiment to study the heat effects 

associated with different spectral ranges of the radiation from the Sun. By placing 

mercury thermometers along the spectrum after the prism, he unexpectedly realized 

that the readings of the thermometers located beyond the red end of the spectrum 

were higher than those of the thermometers located within the visible range. He 

concluded that the spectrum was wider than the visible range, and named the new 

discovery invisible rays, which were later known as infrared rays. Nevertheless, it 

was Max Planck a century later, in 1900, who quantitatively explained Herschel’s 

experiment and described the laws of thermal radiation.  

The development of thermal radiation and infrared technologies took off around 

World War II, due to the numerous applications on military and aeronautic fields. 

However, it soon passed to the civil market. Thanks to the advances in infrared 

detectors and semiconductors in the 50’s and 60’s, and what is more, the CCD in the 

70’s, which promoted the development of the IRFPA (Infrared Focal Plane Array), a 
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variety of technologies have emerged on the Thermography field, such as Non 

Destructive Testig (NDT) or characterization of thermal and optical properties of 

materials. 

Thermography (thermal imaging) does not actually measure temperature, as it is 

popularly believed, but it detects radiation in the infrared range, which is indeed 

related to the sample temperature, but also to the surface nature. One of its main 

advantages is that it is a non-contact technique, what allows to measure under hostile 

environments, such as high pressure or temperature.[1, 2] 

In addition to this, Infrared Thermography (IRT) can be passive or active. Passive 

stands for the simple recording of the emitted infrared radiation, without previous 

excitation of the object to measure. For simplicity reasons, it was the first to arise, 

with applications in the military field (night vision), civil engineering (building 

maintenance) or medicine (body temperature mapping), among others. Active 

Thermography, on the other hand, studies previously excited samples, to retrieve 

information out of the temperature changes. 

Active Infrared Thermography actually belongs to the family of the so-called 

Photothermal Techniques, among which we can also find Thermorreflectance, 

Photodeformation, “Mirage”, Photoacoustic and Photopyroelectric. All of them are 

based on the photothemal effect, which consists of a sample absorbing an intensity 

variable light beam and a thermal wave being generated in response, which is 

propagated along the sample, as well as on the surroundings. As the propagation 

depends on the properties and internal structure of the material, the detection of the 

effects produced by the thermal waves will reveal the material information. In that 

way, Infrared Thermography measures the temperature change in the sample by 

recording the changes in the infrared emission from the material surface. 

Besides, depending on the way of exciting the sample, Infrared Thermography may 

be pulsed or modulated. Pulsed Thermography consists of heating briefly the sample 

and then recording the temperature evolution. The main advantage is the quickness 

of the experiment, from a few milliseconds, enough to measure good thermal 
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conductors, up to no more than a few seconds, needed for low conductivity samples. 

Modulated Thermography (Lock-in), in its turn, excites the samples by means of an 

intensity modulated light beam, so that the periodic energy deposition on the material 

surface generates thermal waves inside the samples and the resulting oscillating 

temperature field is recorded. Needed time for this technique is longer, but in return, 

data show better quality signals and so, much more accurate results. As this thesis 

deals with material characterization, mainly for poor thermal conductors, and 

accurate results are required, Lock-in Thermography will be the selected technique. 

Lock-in Thermography took its first steps as Photohtermal Radiometry, where a 

monolithic infrared detector records the temperature over a small area in the surface. 

The necessity to scan each point of the sample surface made it a high time-

consuming technique used only for the strictly necessary cases. However, the 

development of the IRPFAs promoted the current Lock-in Thermography, where a 

matrix of infrared detectors is able to map the surface temperature at once. Thus, IR 

video cameras with fast data acquisition and high lateral resolution provided the 

necessary tools for fast thermal characterization of materials. 

Since then, Lock-in Thermography has been widely used to measure thermal 

properties of materials with flat and parallel surfaces, in particular thermal diffusivity 

(D), which is a magnitude related to the speed of propagation of heat during changes 

of temperature over time. The traditional method to measure the thermal diffusivity 

of this kind of materials is the so-called phase method, with two possibilities. On the 

one hand, samples of a known thickness may be studied with plane illumination. For 

them, the temperature of the rear surface is measured as a function of the modulation 

frequency, and the representations of the phase and the natural logarithm of the 

amplitude as a function of the square root of the frequency show a linear behaviour 

from whose slopes the in-depth thermal diffusivity may be retrieved. On the other 

hand, focused illumination may be used, for which modulation frequency is fixed 

and a temperature map of the front surface is recorded. In this case, amplitude and 

phase are represented as a function of the distance to the heating spot, and the slopes 

allow retrieving the in-plane thermal diffusivity.  
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Recently, industry interests have led to extend the methods to measure thermal 

diffusivity of samples with complex geometries, such as rods [3-5], tubes [6], balls 

[6-8], filaments [9, 10] and free standing thin films [11-13].  

For these two last cases, overestimation in the retrieved diffusivity values has been 

observed when applying the slopes method [9-13]. The first objective of this thesis is 

to clarify the mechanism responsible for the overestimation, related to the 

traditionally neglected contribution of heat losses by conduction to the gas, develop 

a complete theoretical model including all mechanisms and propose a simple and 

reliable method to measure accurately the thermal diffusivity. 

Moreover, some photothermal techniques (photoacoustic spectroscopy or mirage 

effect) have proven to be very accurate in measuring the optical absorption 

coefficient of gases, liquids and solids, competing with success against optical 

techniques in the extreme cases of weakly or highly absorbing materials [14-16]. The 

second objective of this thesis is to perform a systematic study on the ability of 

modulated plane PTR to retrieve simultaneously and accurately both the in-depth 

thermal diffusivity (D) and the optical absorption coefficient (α) of homogeneous 

semitransparent samples, from both theoretical and experimental point of view, 

setting the limits of the technique. 

Further in the study, multilayered samples are considered. Since the seminal work by 

Mandelis and co-workers [17] modulated PTR has been used for thermal 

conductivity depth profile reconstruction of heterogeneous samples such as surface 

hardened steels [18-24], functionally graded materials [25] and partially cured dental 

resins [26]. In the last years, two works dealing with the application of modulated 

PTR to the simultaneous reconstruction of the in-depth varying absorption 

coefficient and thermal diffusivity of semitransparent heterogeneous samples have 

been published [27, 28]. Now in this thesis, the modulated PTR capability to obtain 

simultaneously α and D in multilayered semitransparent materials by applying the 

thermal quadrupole method is studied. The thermal quadrupole method, has been 

applied in the framework of heat conductive transfer to calculate the surface 
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temperature of opaque multilayered samples [29] and to calculate the combined 

radiative and conductive heat transfer in semitransparent bulk materials [30]. Here, 

the objective is to extend the method to calculate the surface temperature of 

multilayered semitransparent samples in a compact way and to show two of its 

potential applications, one of them showing the effect of paint layers on the PTR 

measurements and the other one allowing the determination of thermal contact 

resistances between layers. 

This thesis is composed of five Chapters, including this introductory chapter.  

Chapter 2 reviews the principles of infrared radiation and summarizes relevant 

studies in Infrared Thermography applied to thermal diffusivity measurements. 

Chapter 3 develops the theoretical model to deal with thin films and filaments of low 

conductivity, considering heat losses effects and introducing the traditionally 

neglected heat losses by conduction to the gas. The experimental setup required to 

perform accurate measurements is also designed. Last, reliable results on thin films 

and filaments are presented, confirming the theoretical model and establishing the 

conditions and limits to measure thermal diffusivity of thin films and filaments by 

Lock-in Thermography. 

Chapter 4 focuses on semitransparent samples, in particular, on the simultaneous 

measurement of both thermal diffusivity and optical absorption coefficient. First, the 

ability of modulated plane PTR to retrieve simultaneously these properties on 

homogeneous samples is tested. Next, multilayered samples are considered, and the 

thermal quadrupole method is extended to apply it to multilayer semitransparent 

samples in order to retrieve both properties in a compact way. Furthermore, some 

disturbing effects modifying the samples surface temperature are studied, such as 

heat losses, multiple reflexions of the incident light, transparency of the samples to 

the infrared and lateral heat diffusion. Last, a large collection of homogeneous 

samples of all optical possibilities are characterized, and also, two applications on the 

multilayers are presented, showing the effect of painting the samples and retrieving 

thermal contact resistances between layers. 
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Chapter 5 summarizes the posed hypothesis and theoretical models developed, 

together with the experimental results obtained, and extracts conclusions leading to 

assessments for future research.  

In addition, a list of publications resulting from this thesis is presented. 
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2. Theoretical background 

2.1. Thermal emission 

Infrared radiation (IR) is the electromagnetic radiation in the wavelength region 

longer than visible light wavelengths, lying from 0.75 to 1000 µm. In turn, this IR 

spectrum can be divided into regions. Closest to the visible, the near infrared region 

corresponds to wavelengths between 0.75 and 1.5 µm. Next, the range between 1.5 to 

20 µm is called middle infrared. Last, the far infrared region ranges from 20 to 1000 

µm.  

 

 

 

 

 

Figure 2.1: Electromagnetic spectrum showing the infrared region.  

0.4 0.7 20 1000 

WAVELENGTH (microns) 
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The importance of infrared radiation lays on the fact that all objects with a 

temperature over 0 K emit (or absorb) infrared radiation, as it corresponds to 

vibrational and rotational movements of particles. In case of solid bodies, infrared 

emission energy depends on the surface nature, the body temperature, the wavelength 

and the direction. 

It is worth introducing the concept of black body or perfect radiator. A black body is 

an object which completely absorbs radiation from any direction or wavelength, and 

is able to emit it in the same way until reaching the thermodynamic equilibrium. 

Thus, the intensity of the emitted radiation depends on the black body temperature 

and on the wavelength, being the same for all directions. 

All considered, there are some laws governing the infrared emission from a black 

body, explained below. 

As mentioned before, the temperature dependent infrared emission is not uniformly 

distributed in the wavelength spectrum. Spectral radiance for a black body is given 

by Planck’s Law: 

2

( )
5

2
( , )

1

b hc

kT

hc
M T

e λ

πλ
λ

=
 

− 
                                     

(2.1) 

where c = 3·10
8
 m/s is the speed of light in vacuum, h = 6.63·10

-34
 Ws

2
 is the 

Planck’s constant and k = 1.38·10
-23

 WsK
-1

 is the Boltzmann constant. 

Sometimes, it can be found in a compact way: 

2

1

( )
5

( , )

1

b c

T

c
M T

e λ

λ
λ

=
 

− 
      

(2.2) 

where the so-called first radiant constant is c1= 3.74 ·10
-16

 Wm
2
 and the second 

radiant constant is c2= 1.44 ·10
-2

 mK. 
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In Figure 2.2 the spectral radiance of a black body at different temperatures is shown. 

As Planck’s Law states, the infrared radiation is not uniformly distributed, but it 

shows a maximum for a specific wavelength and then it is reduced at both sides of 

the wavelength spectrum. 

 

Figure 2.2: Spectral radiance of a black body for different temperatures 

according to Planck’s Law.  

In certain situations, Planck’s Law can be simplified. Wien’s Law is the 

approximation of Planck’s Law for short wavelengths, λT << c2, so that the spectral 

radiance becomes: 

2( )
1

5
( , )

c

T
b

c
M T e λλ

λ
−

=

    

(2.3) 

For long wavelengths, λT >> c2, Rayleigh-Jeans Law takes place and the spectral 

radiance can be expressed: 



Chapter 2  

10 

1

4

2

( , )b

c T
M T

c
λ

λ
=

    

(2.4) 

showing a linear dependence of the radiance with temperature for this range. 

It becomes useful determining the λmax, for which the radiance of a black body at a 

temperature T reaches a maximum. Maximizing Planck’s Law with respect to the 

wavelength, Wien’s Displacement Law is obtained: 

max

2898

T
λ =  µm

    

(2.5) 

Moreover, if the total radiance of a black body for all wavelengths is required, 

Planck’s Law must be integrated from λ = 0 to λ = ∞. Thus, Stefan-Boltzmann’s Law 

is obtained:  

4
( )b BM T k T=

     

(2.6) 

where kB = 5.67·10
-8

 W/m
2
K

4
 is the Stefan-Boltzmann constant. 

Concerning the fact mentioned before that infrared emission depends on the object 

surface nature, we note that for a black body, laws of infrared emission do not 

include any parameter on it, as it is a kind of ideal surface absorbing and emitting all 

possible radiation according to its temperature and wavelength. So as to account for a 

real surface, we introduce a parameter determining the absorbing capacity of a body 

surface, the emissivity: 

( )
( )

( )b

M T
T

M T
ε =

    

(2.7) 

As it is observed, the emissivity of a body is the ratio of the total radiance of that 

body to the total radiance of a black body at that temperature. Emissivity depends on 

the wavelength, temperature and direction of the emitted radiation, and can vary 

from ε = 0 to ε = 1, which would be the case of a black body. 
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This considered, a correction should be included to the laws of infrared emission 

explained above, as they were for black bodies. Hence, Planck’s Law for a real 

surface states: 

2

( )
5

2
( , ) ( , )

1

b hc

kT

hc
M T T

e λ

πλ ε λ
λ

=
 

− 
     

(2.8) 

while Stefan-Boltzmann’s Law results:  

4
( ) ( )b BM T T k Tε=

    

(2.9) 

As we may note, in Infrared Thermography, where a detector records the radiance 

emitted by the sample surface to obtain the temperature field of the sample, the 

uncertainty about the emissivity of the sample becomes a major problem. 

However, in modulated IRT, only the changes of temperature are significant to 

retrieve information, regardless of the absolute temperature values. Besides, for small 

changes of temperature, just what we often need in a IRT experiment, the emissivity 

value can be considered constant. 

In addition to this, it is worth noting that Infrared Thermography is a non-contact 

technique. In that sense, one should consider that infrared radiation emitted from the 

sample surface must travel to the detector trough the atmosphere, and in that way, a 

part of the radiation could be absorbed by the atmosphere. Even more, thermal 

radiation from objects in the room could contribute to the radiation reaching the 

detector, causing the detector to observe an apparent temperature of the sample 

different from the real one.  

It is true that the remote sensing devices are equipped with detector materials 

coincident with the so-called “atmospheric windows”. Remembering infrared 

radiation corresponds to vibrational and rotational energy of molecules, the ones 

composing the atmosphere are able to absorb part of the infrared radiation from the 

sample in the way to the detector. But as it is shown in Figure 2.3, the absorption 
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diagram of the atmosphere reveals two areas, from 3 to 5 µm and from 8 to 12 µm, 

where a low absorption occurs, what means that a better transmission of the infrared 

radiation would take place. 

 

Figure 2.3: Wavelength spectrum of the atmospheric and its major components 

absorption.  

In spite of this good transmission in the detection wavelength, it is worth 

remembering that absolute temperatures were not needed, but only changes of 

temperatures. Hence, it is not a problem that the atmosphere absorbs some of the 

radiation or even the room emits infrared reaching the detector, as none of them are 

modulated infrared radiation, and in consequence, will not affect the experiments.   

Back to the aim of the thesis, infrared radiation reviewed so far is a product of the 

light absorption of the sample, transformation into heat, propagation trough the 

material, and lastly emission as infrared, revealing information on the sample 

characteristics. Therefore, let us study the heat conduction trough the material ending 

in infrared emission from the sample surface. 
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2.2. Heat conduction 

As it is the purpose of this thesis to study the thermal and optical properties of 

materials by means of infrared lock-in thermography, based on the photothermal 

effect, it becomes useful reviewing how the heat generated by absorption of light is 

propagated around the material. 

The heat conduction equation for homogeneous and isotropic samples is [31]:  

( ) ( ) ( )
K

trQ

t

trT

D
trT

,,1
,2

��
� −=

∂
∂−∇     (2.10) 

where ( )trQ ,
�

 is the absorbed energy per unit time and unit volume, D is the thermal 

diffusivity and K the thermal conductivity of the material. 

Being the source for the heating an intensity periodically modulated (frequency 

f=ω/2π) light beam, so that ( ) ( )( )ti
erQtrQ

ω+= 1, 0

��
, we are interested in resolving the 

temperature field in the sample. This will be of the form 

( ) ( ) ( )trTrTTtrT acdcAmbient ,,
��� ++= . We can observe the total temperature is the result 

of the contributions of the ambient temperature, a stationary heating of the sample 

and a periodically varying component, which will show the same time dependence as 

the light source, ( ) ( ) ti

acac erTtrT
ω�� =, . 

By substituting the temperature field in terms of each contribution into the heat 

conduction equation (2.10), the following separate equations are obtained: 

( ) ( )02

dc

Q r
T r

K
∇ = −

�
�

 

( ) ( ) ( ) ( ) ( ) ( )02 2 2
, ,1

,
ac

ac ac ac

T r t Q r t Q r
T r t T r T r

D t K K
σ

∂
∇ − = − → ∇ − = −

∂

� � �
� � �

 (2.11) 

where /i Dσ ω= . 
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Figure 2.4: Scheme showing the ambient, stationary and periodic contributions 

to the temperature field in a sample. 

Infrared lock-in thermography deals with the detection and study of the periodic 

component of the temperature, Tac. Therefore, the knowledge of how heat propagates 

along a material lies in the solution and analysis of the Helmholtz equation (2.11). 

As we may note, the temperature field in the sample depends on the shape of the 

excitation as well as on the thermal properties of the material. 

2.3. Thermal diffusivity measurements 

Both Photothermal Radiometry (PTR) and Infrared Thermography (IRT) are 

techniques we can obtain thermal properties with. Thus, thermal diffusivity, D, 

becomes available from surface temperature measurements through the heat 

conduction equation. In addition to homogeneity and isotropy conditions for the 

materials, we focus the study on opaque and semiinfinite samples. Opacity means all 

the energy is absorbed and transformed into heat at the surface, and being 

semiinfinite refers to the absence of lateral borders. Besides, we consider, as a first 
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approach, no heat losses to the surroundings of the samples neither by conduction, 

convection nor radiation. 

The following sections deal with the solution of equation (2.11) for particular cases 

and the methods to retrieve thermal diffusivity. 

2.3.1. Semiinfinite sample 

A. Plane illumination 

We consider an also in-depth semiinfinite sample as it is shown in Figure 2.5, where 

a modulated plane light beam incises.  

 

 

 

 

 

Figure 2.5: Semiinfinite sample illuminated by a plane light beam. 

Being the intensity of the plane beam 0I (W/m
2
) and assuming it is all absorbed, 

nothing reflected, the homogeneous Helmholtz equation is solved 

( ) ( ) zz

acac

ac BeAezTzT
dz

zTd σσσ −+=→=− )(02

2

2

  (2.12) 

where A and B are constants. The temperature is represented by plane thermal waves 

travelling along z > 0 and z < 0. In order to determine the constants, we apply the 

boundary condition of heat flux continuity at the sample surface (z=0), 
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0

0

( )

2

ac

z

dT z I
K

dz =

=     (2.13) 

and, as the sample is semiinfinite in z, we note that the second contribution to the 

temperature has no physical meaning, so that B=0. Therefore, the field of 

temperature results 

0

1 1
( ) ( ) ( )

40 0 04 4

( )
2

2 2 2 2 2 2

z

ac

f f f f
z i z z i z z i z

D D D D

I
T z e

K

I I D I
e e e e e e

K K f f

σ

π π π π π π π
µ µ

σ
µ

π ε π

− − −

= =

= = =
       

(2.14) 

where fD πµ /=  is the thermal diffusion length, a parameter that measures the 

depth penetration of a thermal wave in a material, and /K Dε =  is the thermal 

effusivity, which measures the ability of the material to exchange heat with the 

environment. 

Equation (2.14) shows that in this case of plane illumination of a semiinfinite sample, 

the thermal wave generated spreads out as a damped plane wave. As the 

measurement available with IRT is the temperature of the front (z=0) surface of the 

sample, 

0 4
1

( 0)
2 2

i

ac

I
T z e

f

π

επ
−

= =  

In Figure 2.6 the natural logarithm of the amplitude and the phase of that surface 

temperature are depicted separately as a function of the modulation frequency (in 

logarithmic scale). The natural logarithm of the amplitude shows a linear behaviour 

whose slope is m = - 0.5, whereas the phase remains constant for every frequency at  

- 45º. In this case, the thermal diffusivity cannot be retrieved. 



  Theoretical background 

  17 

-14

-12

-10

-8

-6

0.001 0.01 0.1 1 10 100 1000

Ln
(T

) 
[r

ad
] P

hase [rad
]

f [Hz]

�

�-45º

m = -0.5

- -p /4

- -p /2

- 0

 

Figure 2.6: Phase and natural logarithm of the amplitude of the surface (z=0) 

temperature of a semiinfinite sample (D=0.10·10-6 m2/s, K=0.3 W/mK) 

illuminated by a plane light beam as a function of the modulation frequency. 

B. Focused illumination 

Now, the same previous sample is illuminated, this time by a focused light beam, as 

Figure 2.7 shows. 

 

Figure 2.7: Semiinfinite sample illuminated by a focused light beam. 
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This beam, whose power is 0P  (W) with a Gaussian profile of radius a (at 
21 e ), 

produces at the sample’s surface (z=0) an incoming flux  

( ) 2
2

2

2

0 ar

e
a

P
r

−

=Φ
π

    (2.15) 

The symmetry of the problem suggests working with cylindrical coordinates, r and z 

(there is no dependence on the angle), so that the homogeneous Helmholtz equation 

is 

( ) ( ) 0,,
22 =−∇ zrTzrT acac σ     (2.16) 

In order to solve the temperature field we work in the Hankel space. Thus, the 

Hankel transform of equation (2.16) is 

( ) ( )2 2

0
[ , , ] ( ) 0ac ac oT r z T r z J r rdrσ δ

∞
∇ − =∫  

where δ is the Hankel variable and Jo is the Bessel function of zeroth order. 

Now we develop this equation by applying the Hankel transform properties [32] 

( ) ( )2 2

0 0
[ , ] ( ) [ , ] ( ) 0ac o ac oT r z J r rdr T r z J r rdrδ σ δ

∞ ∞
∇ − =∫ ∫  

( ) ( ) ( )2 2

2 20 0

, , ,1
[ ] ( ) [ ] ( )

ac ac ac

o o

T r z T r z T r z
J r rdr J r rdr

r r r z
δ δ

∞ ∞∂ ∂ ∂
+ + −

∂ ∂ ∂∫ ∫    

       ( )2

0
[ , ] ( ) 0ac oT r z J r rdrσ δ

∞
− =∫  

Considering  ( ) ( )
0

, [ , ] ( )ac ac oT z T r z J r rdrδ δ
∞

= ∫  is the Hankel transform of the 

temperature, we obtain 

( ) ( ) ( ) ( ) ( ) 0,)(
,

0,
,

, 22
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2
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2
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∂
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If we call 
222 σδβ += , then we find that the Hankel transform of equation (2.16) is 

( ) ( ) 0,
, 2

2

2

=−
∂

∂
zT

z

zT
ac

ac δβδ
    (2.17) 

We may note then, that the Hankel transform of the homogeneous Helmholtz 

equation for focused illumination (2.17) looks the same as the homogeneous 

Helmholtz equation for plane illumination (2.12), just exchanging βσ ↔ .  

Therefore, we have found a method to easily solve the temperature field for focused 

illumination: working in the Hankel space. Thus, the Hankel transform of the 

temperature for focused illumination is the same as the temperature for plane 

illumination, changing βσ → . 

Regarding the boundary conditions, note that they must be also worked in the Hankel 

space. This way, the transform of the incoming flux produced by a focused beam 

(2.15) is 

( ) 80
2

)(

4

a

e
P δ

π
δ

−

=Φ     (2.18) 

In order to summarize the procedure to obtain the temperature for the focused case 

out of the temperature for the plane one (or vice versa), the changes are exposed 

below: 

Plane beam  Focused beam 

( )zTac  → ( )zT ac ,δ  

σ  → β  

0

2

I
 → 80

2
)(

4

a

e
P δ

π
−

 

Table 2.1: Table of elements to replace so as to change from plane to focused 

illumination. 
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Once we get the Hankel transform of the temperature for the focused case, the 

temperature will be obtained applying the inverse transform 

( ) ( )
0

, , ( )acac oT r z T z J r dδ δ δ δ
∞

= ∫    (2.19) 

Returning to the purpose of getting the field of temperature of an in-depth 

semiinfinite sample illuminated by a focused light beam, we apply the procedure 

summarized in Table 2.1 by making a comparison with the equation (2.14) for the 

plane beam case. Hence, 

800
2)(

4
),(

2
)(

a

e
e

K

P
zTe

K

I
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z

ac
z

ac
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βπ
δ

σ

β
σ −

=→=   (2.20) 

And so, we perform the inverse transform to obtain the temperature 

( )
2

( ) 80

0
, ( )

4

a
z

ac o

P e
T r z e J r d

K

δ
β

δ δ δ
π β

−∞
= ∫   (2.21) 

It is still possible to get an analytical solution to this equation if we consider an ideal 

focusing of the laser beam (a = 0) 

( ) 0 0

0

1
, , 0 ( ) ( , 0)

4 4

z
R

ac o ac

P Pe
T r z a J r d T R a e

K K R

β
σδ δ δ

π β π
∞ −= = → = =∫

       

(2.22) 

[33]where we use the new coordinate 22 zrR += , appropriate for the spherical 

thermal wave spreading in this case. Besides, we may expand this solution (2.22) to 

clarify the properties of this thermal wave 

R
D

f
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D

f
RiR

ac ee
RK

P
ee

RK

P
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ππ
µµ
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=== 1

4

1

4
)0,( 0

11

0
  (2.23) 

As we may see, both the phase, Ψ, and the natural logarithm of the amplitude 

multiplied by the distance, Ln(TR),exhibit a linear dependence on the distance R, 
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whose slope [11, 34], the same for both, lets us obtain the thermal diffusivity D 

according to 

 mψ = -1/µ =- Df /π = )ln(TRm    (2.24) 

Figure 2.8 shows the temperature of the front surface (z=0) of this semiinfinite 

sample, the measurement available from IRT measurements, where the phase and the 

natural logarithm of the amplitude multiplied by the distance are depicted separately 

as a function of the distance to the heating spot. Black lines correspond to the 

temperature for an ideal focusing of the light beam (2.23), and as (2.24) states, the 

amplitude and phase contributions are represented by parallel straight lines. On the 

other hand, green lines account for equation (2.21), where the effect of a real beam 

focusing of radius a = 500 µm has been considered. In spite of the large size of this 

radius, we observe the effect is only noticeable at close distances to the spot. Thus, at 

large distances the slopes preserve the same value as for the ideal case, allowing us 

then to work with the simpler ideal case, provided the data are taken sufficiently far 

away from the excitation point. 

 

 

 

 

 

 

Figure 2.8: Phase and natural logarithm of the amplitude multiplied by the 

distance of the surface (z=0) temperature of a semiinfinite sample (D=0.10·10-6 

m2/s, K=0.3 W/mK) illuminated by a modulated focused light beam (f=0.05 Hz) 

as a function of the distance to the heating spot. Black lines represent an ideal 

focusing (a=0) of the light beam, while green ones account for the effect of a real 

beam focusing of radius a=500 µm. 
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2.3.2. Sheet 

We work now with a sheet of thickness ℓ heated again by a plane or focused laser 

beam, as Figure 2.9 shows. 

 

 

 

 

 

Figure 2.9: Sheet of thickness ℓ illuminated by a plane (left) or a focused (right) 

light beam. 

We have to solve once more the Helmholtz equation (2.12), but this time with 

boundary conditions of heat flux continuity for both surfaces, z=0 and z=-ℓ. We 

obtain first the temperature for plane illumination, and then we apply the procedure 

summarized in Table 2.1 together with the equation (2.19) to find the temperature for 

the focused case. The results are shown below. 
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(2.26) 

It becomes interesting to study two special situations for these temperature fields, the 

extreme cases of a thermally thin or a thermally thick sheet. Thermal thickness refers 

to the thickness of the sample in comparison with the thermal diffusion length, µ. 

This way, a sample may be considered thermally thin when fD πµ /=<<ℓ , and 

so, the approximations 

ℓ
ℓ σσ ±≈± 1e  or ℓ

ℓ ββ ±≈± 1e     (2.27) 

may be applied. On the other hand, we call it thermally thick when fD πµ /=>>ℓ

what makes it possible to approximate 

0≈− ℓβe      (2.28) 

We show below the fields of temperature for these extreme cases.  

A. Plane illumination 

The temperature field of a sheet illuminated by a plane light beam is described in 

general terms by the equation (2.25). However, if we consider the special situations 

described above, the approximations (2.27) and (2.28) lead to the following simple 

equations  

20

2

0

42
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π

πσ
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thinac e
fK

DI

K

I
zT

−
=≈

ℓℓ
   (2.29) 
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which it becomes easier to obtain the diffusivity from. It is worth noting that in the 

case of a thermally thin sample the temperature does not depend on z, and in the case 

of a thermally thick one we find it is the same as for the semiinfiinite sample (2.14).  

In Figure 2.10 we find the temperatures of the front (left) and rear (right) surfaces as 

a function of the frequency, where we note that the thermal thickness depends on the 

modulation frequency. For the front temperature (left) we show separately the phase 

and the natural logarithm of the amplitude as a function of the frequency. The two 

extreme cases are clearly differentiated: thermally thick for high frequencies, where 

the slope of the amplitude m=-0.5 and the constant phase of -45º are characteristic of 

the semiinfinite sample; and thermally thin for low frequencies, where from equation 

(2.29) we observe a still linear behaviour of the amplitude but of slope m=-1 and a 

still constant phase but with a turn to -90º. In neither of these extreme cases of the 

front surface temperature is it possible to obtain the diffusivity value. On the other 

hand, for a sheet, measurements of the rear surface temperature (right) are available. 

We observe from equation (2.30) for the thick case that the phase and the natural 

logarithm of the amplitude multiplied by the square root of the frequency exhibit a 

linear behaviour with the square root of the frequency, whose slopes are 

mψ = - D/πℓ
 
=

)ln( fT
m

    
(2.31)

 

and so let us obtain the thermal diffusivity. The slopes values are the same for both 

amplitude and phase, as we may check in Figure 2.10 (right) by looking at the 

parallelism in the thick range. The thin one, however, does not let us obtain 

information in a simple way.  
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Figure 2.10: Sheet (D=0.15·10-6 m2/s, K=0.2 W/mK, ℓ=50·10-6 m) illuminated 

by a plane light beam. Left: Phase and natural logarithm of the amplitude of the 

front surface (z=0) temperature as a function of the modulation frequency. Right: 

Phase and natural logarithm of the amplitude multiplied by the square root of the 

frequency of the rear surface (z=-ℓ) temperature as a function of the square root 

of the frequency. 

B. Focused illumination 

The same way as for plane illumination, the general equation describing the field of 

temperature of a sheet illuminated by a focused light beam is (2.26), but the 

approximations above, (2.27) and (2.28), for special cases simplify the analysis to 

obtain the thermal diffusivity. Hence, for the thin case 
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As for the semiinfinite sample, we consider an ideal focusing of the laser beam (a=0) 

( )0( , , 0)
4

ac thin o

P
T r z a K r

K
σ

π
= ≈

ℓ
   (2.33) 

where Ko is the Kelvin function of zeroth order. Then, we apply the asymptotic 

approach [33] of this function, as we analyse points far from the heating spot 
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It is worth noting that this wave is spreading as a cylindrical wave, which does not 

depend on the coordinate z. As we may observe (Figure 2.11), both the phase and the 

natural logarithm of the amplitude multiplied by the square root of the distance show 

a linear behaviour with the distance to the heating spot, whose slopes are 

mψ = - Df /π  = 
)ln( rT

m
    

(2.35) 

from which it becomes easy to obtain the thermal diffusivity. Again both slopes 

present the same value, what we can check from the parallelism of them in the 

graphics. 

Regarding the ideal focusing approximation, we show here, as in the semiinfinite 

sample, that, but for the points close to the heating spot, the effect of the 

approximation is negligible. Far away from the heating spot, the graph shows that the 

slopes of the real focusing (green lines) are the same as the ones of the ideal focusing 

(black lines). Thus, it lets us consider the ideal focusing in order to simplify the 

analysis. Anyway, it is worth noting that in this case, even for the ideal case, the 

singularity in r=0 makes it impossible to use points close to the heating spot by 

means of the slopes method.  

For the thick case, by applying the approximation (2.28) we get 

2( ) /8
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0
( , ) ( )

4

a
z
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P e
T r z e J r d

K

δ
β δ δ δ

π β

−∞
≈ ∫   (2.36) 

which is the same temperature as for the samiinfinite case (2.21). Thus, the results 

are depicted in Figure 2.8. 
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Figure 2.11: Phase and natural logarithm of the amplitude multiplied by the 

square root of the distance of the surface (z=0) temperature of a thermally thin 

sheet (D=0.15·10-6 m2/s, K=0.2 W/mK, ℓ=50·10-6 m) illuminated by a modulated 

focused light beam (f=0.1 Hz) as a function of the distance to the heating spot. 

Black lines represent an ideal focusing (a=0) of the light beam, while green ones 

account for the effect of a real beam focusing of radius a=500 µm. 

In general, IRT measurements allow the themal diffusivty retrieval both for 

semiinfinite samples and sheets in case of focused illumination, by means of the 

slopes method. However, if plane illumination is applied, only thermally thick sheets 

from the rear surface will provide useful results.  

Besides, it is worth noting that the effect of an ideal approximation for the focusing 

of the illumination has no influence on the retrieved diffusivity values, as long as the 

measurements are performed far enough from the heating spot. 
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2.4. Heat losses 

In the previous section heat conduction through the materials was reviewed, 

assuming there was no heat losses to the surroundings. Now, a more realistic model 

is considered including heat losses, so that the heat propagation would be as it is 

schemed below in terms of fluxes:  

 

  

 

 

Figure 2.12: Heat fluxes diagram for a semiinfinite sample (left) and a sheet 

(right). The illumination is either plane or focused. 

As we may see, convection is one of the contributions to the heat losses. This heat 

transfer happens when a fluid (air) is in contact with a solid surface at a higher 

temperature, what originates a circulation of the fluid. The convection flux in our 

case, being the temperature rise small, behaves linearly with the surface temperature, 

as the Newton’s Law of Cooling states, ( )∞−= TThq scvcv , where Ts is the surface 

temperature, T∞ is the temperature of the fluid far away from the surface, and hcv is 

the convection coefficient. This coefficient depends on the properties of the fluid as 

well as on the kind of air movement and the size and orientation of the surface. An 

estimation for a vertical slab would be hcv ≈ 1.5 (∆T / height )
0.25

, as a function of the 

temperature difference between the surface and the fluid and the height of the sample 

[35]. For instance, a vertical slab at about 30º C surrounded by air at 20º C would 
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have convection losses with a coefficient hcv = 8.5 W/m
2
K (height of the sample: 

1cm) or hcv = 4.8 W/m
2
K (height 10 cm).  

Another contribution to the heat losses is the thermal radiation. This heat transfer 

takes place between two surfaces at different temperatures by means of 

electromagnetic waves, which implies there is no need of matter to be propagated. 

The radiation behaviour is described by the Stefan-Boltzmann’s Law, 

4

sBemitted Tkq ε= , where ε is the emissivity of the sample surface, kB is the Stefan-

Boltzmann’s constant and Ts
 
is the surface temperature. Thus, the net radiated flux of 

the sample, considering it interacts with the surroundings, is 

4 4

rad emitted absorbed B surface B surroundingsq q q k T k Tε α= − = − , where α  is the absorptivity of the 

sample surface. In order to balance the radiation exchange between the sample and 

the surroundings, the Kirchhoff’s Identity (ε=α) is applied, so that it results 

)( 44

gssurroundinsurfaceBrad TTkq −= ε .  

If the surface temperature is taken as Tsurface = Tsurround
 
+ ∆T, and remembering the 

temperature rise in our case will be small, which means ∆T<<Tsurround, the following 

approximation can be applied: 

4 4 3 3(( ) ) 4 4 ( )rad B surround surround B surround B surround surface surroundq k T T T k T T k T T Tε ε ε= + ∆ − ≈ ∆ = −
 

This way we obtain that the radiative coefficient is 3
4rad B surroundh k Tε≈  [36], so we 

can estimate its maximum (ε=1) value at room temperature, resulting hrad ≈ 6 

W/m
2
K. 

Considering both convection and radiation contributions all together, we may 

establish a combined coefficient h = hcv + hrad , which would result, with the previous 

estimations, in a maximum value at room temperature of about h ≈ 15 W/m
2
K. 

Regarding the contribution of the heat conduction to the gas, which transfers the heat 

by interaction among the molecules without a net flux of matter, it is described by 
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the Fourier’s Law, conduction gq K T= − ∇ , where Kg is the conductivity of the gas, but it 

is usually neglected due to the gas low conductivity value, Kair=0.026 W/mK. 

Proceeding the same way as in the previous section to solve the field of temperature 

in the samples, we add now the heat losses by convection and radiation to the 

boundary conditions.  

2.4.1. Semiinfinite sample 

For a semiinfinite sample, the equations, boundary conditions and solutions are 

exposed below: 
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(2.38) 

where h is the combined coefficient for convection and radiation losses, and so 

σKhH p =  and βKhH f =  are the terms accounting for the heat losses by these 

mechanisms for plane and focused illumination, respectively. 

The effect of heat losses on the front surface temperature is shown in Figure 2.13. 



  Theoretical background 

  31 

-14

-12

-10

-8

-6

0.001 0.01 0.1 1 10 100 1000

Plane beam z = 0

Ln
(T

) 
[r

ad
] P

hase [ra
d]

f [Hz]

�

� - -p /4

- -p /2

- 0

-5

-4

-3

-2

-1

0

-2.4 -1.6 -0.8 0 0.8 1.6 2.4

Focused beam z = 0

R
ad

ia
ns

r [mm]

Y

Ln(T*r)

For plane illumination (left) heat losses show little effect on the amplitude and phase 

of the surface temperature, even at the extreme situation depicted with heat losses of 

a much higher value, h=50 W/m
2
K, than the maximum estimated at room 

temperature, h=15 W/m
2
K. It is only at low frequencies when we observe a slight 

deviation from the straight lines representative of the adiabatic case. Concerning the 

focused illumination (right), we realise there is no analytical solution for the equation 

(2.38) as we found for the adiabatic case (2.23) which led to the slopes calculation 

(2.24). Observing the graphics, both effects, h=15 W/m
2
K (purple) and h=50 W/m

2
K 

(red), are plotted in order to check that even at this low diffusivity and low frequency 

example, the maximum estimated effect has scarce influence on the parallel slopes of 

the adiabatic case. Only for an excessive coefficient h=50 W/m
2
K, the curves are 

deviated. As we may observe, the phase turns upwards, decreasing the slopes 

absolute value, whereas the amplitude turns downwards, causing the opposite effect. 

Besides, it is worth noting that the change is not the same for both, but the amplitude 

experiments a higher effect. 

 

Figure 2.13: Front surface (z=0) temperature of a semiinfinite sample 

(D=0.10·10-6 m2/s, K=0.3 W/mK) illuminated by a plane light beam (left, as a 

function of the modulation frequency) and a focused (f=0.05 Hz) light beam 

(right, as a function of the distance to the heating spot). Black lines represent the 

temperature without heat losses to the surroundings of the sample whereas red 

lines account for the effect of heat losses by convection and radiation (h=50 

W/m2K). Purple lines in the focused case represent the same effect of heat losses 

with h=15 W/m2K. 



Chapter 2  

32 

Generalizing, heat losses by convection and radiation have scarce influence on 

diffusivity measurements by IRT on bulk materials at room temperature. 

2.4.2. Sheet 

Regarding a sheet, the same procedure is considered, and so the results are: 
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(2.40) 

In order to show the effect of these heat losses, we study again the extreme cases of 

thermally thin and thermally thick sheets, as they lead to simple equations. 
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A. Plane illumination 

The field of temperature of a sheet illuminated by a plane light beam with heat losses 

to the surroundings of the sample is described by equation (2.39). However, 

approximations (2.27) and (2.28) simplify it: 
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where we change the coordinates to 
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Regarding the thick case we find 
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which is the same as (2.37) for the semiinfinite sample. 

In Figure 2.14 we see the temperatures of the front (left) and rear (right) surfaces of a 

sheet illuminated by a plane beam. Black lines represent the adiabatic case while red 

ones account for the heat losses. As we may observe for both surfaces, heat losses 

only affect the thin region, at low frequencies, whereas the thick range remains 

unchanged. Thus, we may obtain the thermal diffusivity from the thick range at the 

rear surface temperature through the equations (2.31). Besides, let us point out that 

for the thin range, the thinner the sheet, the higher the effect of the heat losses. 
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Figure 2.14: Front surface (z=0), on the left, and rear surface (z=-ℓ), on the right, 

temperature of a sheet (D=0.15·10-6 m2/s, K=0.2 W/mK, ℓ=50·10-6 m) 

illuminated by a plane light beam. Black lines represent the temperature without 

heat losses to the surroundings of the sample whereas red lines account for the 

effect of heat losses by convection and radiation (h=15 W/m2K).  

B. Focused illumination 

Now we study the field of temperature with heat losses of a sheet illuminated by a 

focused light beam (2.40) for the special cases of thermally thin and thick so as to 

simplify the analysis.  

For the thermally thin approximation the temperature writes 
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with the previous change of coordinates 
ℓK

h2
' 22 += σσ  and so,

222 '' σδβ += . This 

equation is the same as (2.32) with the new variable. Then, performing the same 

way, which is considering ideal focusing of the laser beam and applying the 

asymptotic approach, we get 
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As we may observe from the equation (2.44) and the graphics in Figure 2.15, here 

again the phase and the natural logarithm of the amplitude multiplied by the square 

root of the distance show a linear behaviour with the distance to the heating spot, but 

this time the slopes are affected by the heat losses in such a way that the parallelism 

is lost, as the phase turns upwards whereas the amplitude does it downwards. 

   mψ      = - ]'Re[σ  

)ln( rT
m  = - ]'Im[σ  

However, it is still possible to obtain the thermal diffusivity value, due to the fact that 

the product of the slopes is independent of heat losses [9, 12, 13]: 

 
)ln( Tr

m × mψ = - πf/D (2.46) 
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Figure 2.15: Front surface (z=0) temperature of a sheet (D=0.15·10-6 m2/s, 

K=0.2 W/mK, ℓ=50·10-6 m) illuminated by a focused (f=0.1 Hz) light beam as a 

function of the distance to the heating spot. Black lines represent the temperature 

without heat losses to the surroundings of the sample whereas red lines account 

for the effect of heat losses by convection and radiation (h=15 W/m2K). 

(2.45) 
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For the thermally thick approximation the result is 
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the same as for the semiinfinite sample. Thus, the effect is shown in Figure 2.13 

(right). 

In conclusion, heat losses by convection and radiation (conduction to the gas is 

usually neglected due to the low thermal conductivity of the air) hardly affect 

semiinfinite samples. For sheets, however, in spite of thermally thick samples, which 

behave as the semiinfinite ones, the effect on thermally thin samples is well 

noticeable. Concerning focused illumination, which it was possible to retrieve 

diffusivity values with, the effect of heat losses modifies the slopes of the 

temperature representations, but in such a way, that the product of the slopes 

corresponding to amplitude and phase cancels the effects and allows retrieving 

accurate diffusivity values. 

2.5. Thermal quadrupole method 

In previous sections we solved the full temperature field of samples and then we used 

the solution at front and rear surfaces to obtain the thermal diffusivity of the 

materials. Indeed, the only measurements available from Infrared Thermography 

experiments in IR opaque materials are the temperature fields of surfaces. In that 

sense, there is no need to analytically solve the full temperature field of a sample. 

The thermal quadrupole method [29], reviewed below, is a matrix method that 

provides a quick way to solve surface temperatures.  

Let us consider a sheet of thickness ℓ illuminated by a plane light beam (Figure 2.9, 

left). For convenience, we express the temperature and heat flux in terms of 

hyperbolic functions, instead of the ordinary exponential functions: 
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where A and B are constants. If we evaluate the equations at both surfaces, z=0 and 

z=-ℓ, we get 
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It is possible to write the relation between T and Φ at the front and rear surfaces in a 

matrix way, so that we obtain 
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Thus, we have a matrix that represents the sheet, and moreover, given the incoming 

and outgoing fluxes (neglecting heat losses), the temperatures at the front and rear 

surfaces may be solved. For instance,  
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which agree with equation (2.25) for z=0 and z=-ℓ, respectively. 

Furthermore, it is also possible to consider heat losses by convection and radiation 

with this method in a simple way. As we did before for the sheet (Figure 2.12, right), 

we add the heat losses to the boundary conditions, this is, to the fluxes: 
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where h1 and h2 stand for the combined coefficient for convection and radiation 

losses h, considering different possible values at the front or the rear surface, 

respectively. Hence, the matrix system results 
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from which front and rear surface temperatures may be easily solved. It is worth 

noting that the effect of heat losses is incorporated in a compact way as extra 

matrixes added on the left (right) of the main matrix representing the sheet for front 

(rear) surface heat losses. 

In addition to this, the thermal quadrupole method is a powerful tool to consider also 

other effects, such as thermal resistance between layers, which accounts for the lack 

of adherence between consecutive sheets, in an easy way. 

Let us consider a system of two layers, of diffusivities D1, D2 and conductivities K1, 

K2, as it is schemed in Figure 2.16. 

 

 

 

 

 

Figure 2.16: System of two layers of thickness ℓ1 and ℓ2, illuminated by a plane 

light beam.  
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From equation (2.49) we know the model of each separate sheet is: 
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If the system exhibits a perfect adherence between the layers, then we have 

temperature and flux continuity at the contact surface z1 
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so from (2.51) we conclude the model for the system of two layers results 
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On the other hand, if there is a thermal resistance (R) at the contact surface, the 

system will show a discontinuity in the temperature: 
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Thus, the system (2.51) will become 
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where again the contribution of the thermal resistance is easily incorporated as an 

extra matrix between the two matrixes representing the layers in contact. 

As we may see, in the thermal quadrupole method, each contribution is represented 

by an independent matrix added or not to the basic system for a single adiabatic 

sheet. As an example, the model for a system consisting of two layers with a thermal 

resistance in between and with heat losses at both front and rear surfaces will be 
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where the temperatures of the front and rear surfaces are easily solved. 

Generalizing the method for a system of N layers of thickness ℓi (Figure 2.17), with 

neither heat losses nor thermal resistances we obtain 
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which expressed in a compact way is 
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the matrix for each layer. 

In case of extra contributions to this system, the corresponding matrices should be 

added in the correct place following the procedure explained above. 

 

Figure 2.17: System of N layers of thickness ℓi, illuminated by a plane light 

beam.  

This matrix method reviewed for plane illumination works also for a focused beam, 

applying the changes summarized in Table 2.1. Hence, the model for a sheet is 
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where temperatures and fluxes are worked in the Hankel space. Once one solves the 

Hankel transform of the temperatures for the front and rear surfaces, the temperatures 

are obtained by applying the inverse transform, as equation (2.19) states. Regarding 

extra effects, the matrixes are added in the same way as for plane illumination.  
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3. Thin films and filaments thermal 

diffusivity measurements 

3.1. Introduction 

Now, the method reviewed in Chapter 2 to measure thermal properties by infrared 

lock-in thermography is applied to the extreme case of thin films and filaments. 

Point-like illumination is used to study, through the surface temperature map, the 

heat propagation along the surface, and therefore, the in-plane thermal properties, 

with special attention paid to thermal diffusivity.  

Infrared Thermography (IRT) requires dealing with several issues concerning the 

data taking. It is well known that diffraction effects of the infrared radiation when it 

passes through the lens of the recording camera affect the readings of the surface 

temperature. At high frequencies this affects the measurements increasing the slopes, 

and so the resulting diffusivity becomes overestimated [37-41]. At low frequencies, 

however, there is no evidence of such effect on the slopes, but one has to deal with 

heat losses in return. Figure 3.1 shows experimental diffusivity values for a 150 µm 

diameter PEEK (polyeter-eter-ketone) filament in air as a function of the modulation 

frequency. The diffusivity values are obtained from the slopes of the surface 

temperature amplitude (squares) and phase (circles), and from the product of both 
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(solid symbols) in order to cancel the heat losses effect. As expected, we observe 

increasing diffusivity values above 10 Hz, due to diffraction. Below, but for 

amplitude and phase deviations at low frequencies accounting for heat losses, the 

diffusivity value out of the product of both remains constant at 0.80 mm
2
/s. 

Nevertheless, this obtained value is significantly higher than the expected value 

found in literature, 0.19 mm
2
/s [42] (plotted in red), which is indeed the typical 

diffusivity of polymers. 
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Figure 3.1: Diffusivity values for a 150 µm diameter PEEK filament measured 

in air as a function of the modulation frequency. Diffusivities are obtained from 

the amplitude (squares) and phase (circles) of the surface temperature, and the 

product of both (solid symbols). The expected diffusivity value is shown in red. 

Similarly, measurements on thinner samples of this material show higher values than 

expected, reaching even 1.2 mm
2
/s for a 34 µm filament.  

Concerning the high frequency limit, it is possible to consider the diffraction effects 

and fit the measurements to a diffraction corrected non-linear model [37, 38, 40, 41], 

but our target focuses on the thermal properties retrieval only by linear methods. So 

as to fulfil our purpose, we avoid the problematic frequency range and limit 
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ourselves to the low frequency range. But, as we saw in the previous chapter, this is 

the range where heat losses become significant, so it forces us to work under the 

model reviewed in section 2.4 and apply the equation (2.46) to cancel the effect of 

heat losses by convection and radiation in order to retrieve the correct thermal 

diffusivity. However, although the model gives good results for thermal diffusivity 

measurements on thick and high conductivity materials [9-13], results on Figure 3.1 

and some examples of thin low diffusivity samples found in literature [11, 12, 43] 

clearly show that the model does not explain the experimental results.  

With the aim of identifying the mechanism responsible for this overestimation on 

thin low diffusivity samples, we introduced a traditionally neglected term, heat losses 

by conduction to the gas. 

3.2. Theoretical model 

Now a model is developed adding the contribution of the previously neglected heat 

conduction to the gas to the model reviewed in Chapter 2, which already considered 

heat losses by convection and radiation. Then, the effect of this new contribution on 

thin films and filaments is studied and the method to overcome the overestimation 

when retrieving diffusivity values of thin poor conducting materials is proposed.  

3.2.1. Films 

A. Isotropic film 

We work now on a theoretical model for an isotropic sheet of thickness ℓ, surrounded 

by air, as in Figure 2.12, illuminated by a modulated focused light beam. 

In order to resolve the temperature field, we proceed as in Chapter 2, by resolving the 

homogeneous Helmholtz equation and adding the heat losses to the boundary 
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conditions. However, since this time we include the contribution of heat conduction 

to the gas, we must consider also the equations for the gas at the front (g1) and back 

(g2) of the sample (s), which will correspond to outgoing thermal waves. Hence, the 

equations are 
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Concerning the boundary conditions, temperature and heat flux continuity at the 

sample front and back surfaces are required: 
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By resolving the system, we obtain the temperature field for a sheet: 
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where 
ssKhH β/=  and 

ssgg KKG ββ /=  are the terms accounting for heat losses 

by the combined convection and radiation, and conduction to the gas, respectively. It 

is worth noting that the effect of the different contributions to the heat losses can be 

easily considered or neglected, as they are independent of each other.  

As it is the aim of the chapter to study thin films, we particularize, as in the previous 

chapter, the sheet temperature field (3.1) to the case of a thermally thin film. Next, 

we study a thermally thick sheet as well, in order to compare the effect of heat losses 

on thermal diffusivity measurements for both extreme cases. 
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i) Thermally thin film 

Let us approximate the sheet temperature field (3.1) to a thermally thin film 

temperature by applying the appropriate approximation (2.27). Thus, the temperature 

field becomes: 

 δδδ
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drJ
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 (3.2) 

It is easy to check that if we neglect heat conduction to the gas (G=0), the previously 

reviewed equation (2.43) is obtained, as expected. 

Figure 3.2 shows the surface temperature simulation for a thin film (3.2), where the 

different contributions to the heat losses are depicted separately. For this thin low 

diffusivity film, the phase and the natural logarithm of the amplitude multiplied by 

the square root of the distance are represented as a function of the distance to the 

heating spot. According to the graph, under adiabatic conditions (black lines) 

amplitude and phase are straight parallel lines, as expected. Besides, regarding the 

convection and radiation effect (red lines), although it changes the slopes, it 

preserves the linearity and still, it is possible to retrieve the diffusivity, as reviewed 

in equation (2.46). However, when dealing with heat losses by all the three 

mechanisms (blue lines), the conduction to the gas introduces such an effect that not 

only the slopes are changed, but also even the linearity is lost, preventing, then, from 

obtaining diffusivity values by means of linear methods. 



Chapter 3 

48 

-5

-4

-3

-2

-1

0

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

R
a

d
ia

n
s

r [mm]

 

Ln(T*r1/2)

Y

 

Figure 3.2: Surface temperature simulation as a function of the distance to the 

heating spot for a 25 µm thick film (D = 0.15·10-6 m2/s, K = 0.2 W/mK) at a 

modulation frequency f = 0.1 Hz. Different situations are represented: without 

heat losses (black lines), with convection and radiation losses (h = 15) (red lines) 

and with heat losses by the three mechanisms (blue lines). 

 

Figure 3.3: Surface temperature simulations as a function of the distance to the 

heating spot for: on the left, 200 µm thick film (D = 0.15·10-6 m2/s, K = 0.2 

W/mK) at f = 0.1 Hz; on the right, 25 µm thick film (D = 116·10-6 m2/s, K = 400 

W/mK) at f = 0.1 Hz. Different situations are represented: without heat losses 

(black lines), with convection and radiation losses (h = 15) (red lines) and with 

heat losses by the three mechanisms (blue lines). 
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It becomes also worth noting that, for a given h coefficient, the effect of heat losses 

is bigger on thin low conductivity samples. In Figure 3.3 we may observe the effect 

of heat losses on different sample thicknesses and conductivities. On the left, we 

show results for an eight times thicker sample, where we see that the effect is 

significantly smaller. On the right, in the same way, a much higher conductivity 

sample presents also a small effect of heat losses. However, it is worth mentioning 

that in neither of the cases the effect is fully negligible. 

ii) Thermally thick film 

By applying this time the thermally thick approximation (2.28), temperature for a 

thick sheet is obtained: 
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 (3.3) 

If we represent the different contributions to the heat losses for a thick sample, 

Figure 3.4, we may observe that, as it was the case for convection and radiation heat 

losses, for conduction to the gas losses the effect is also hardly noticeable. Only for 

this extreme example depicted, for a very low diffusivity sample, at a very low 

modulation frequency and with an excessive h coefficient, we get to perceive the 

deviation of the curves. 

Therefore, we might clearly state that the effect of heat losses by conduction to the 

gas is by no means negligible, as it was traditionally considered, when dealing with 

thin films of low diffusivity. Still, it is possible to ignore it for thick samples, where 

even convection and radiation losses effect is small and, anyway, non-cancellable by 

the slopes method. 
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Figure 3.4: Surface (z=0) temperature simulation as a function of the distance to 

the heating spot for a thermally thick sheet (D = 0.10·10-6 m2/s, K = 0.3 W/mK) 

at a modulation frequency  f = 0.05 Hz, calculated without heat losses (black 

lines), with convection and radiation losses (h=50) (red lines) and with heat 

losses by the three mechanisms (blue lines). 

 

B. Anisotropic film 

Now we consider the same sheet as in the previous subsection, but with a thermal 

conductivity varying with the direction. Let the axes (x,y,z) in Figure 2.9 Right be the 

principal axes of the anisotropic sample with the corresponding principal thermal 

conductivities (Kx, Ky, Kz) and thermal diffusivities (Dx, Dy, Dz).  

Due to the lack of cylindrical symmetry the ac component of the temperature can be 

expressed in the Fourier space as [44, 45]
 
 

∫ ∫
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+− += ηλγγηλ ddeBeAezyxT zzyxi ]''[),,( )(    (3.4) 

where λ and η are the Fourier variables, and zyx DiDD /)( 222 ωηλγ ++= .  
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A’ and B’ are constants to be determined from the heat flux continuity at the sample 

surfaces: 
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where the second term in the first condition is the Fourier transform of the heating 

power distribution. Therefore, the sample temperature is obtained 
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where γzKhH /'= .  

Now we analyze the two extreme cases of practical interest. 

i) Thermally thin film. 

If the sheet is thermally thin ( fDzz πµ /=<<ℓ ) equation (3.5) reduces to  
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where ρc = Kx/Dx = Ky/Dy == Kz/Dz is the heat capacity. Note that the temperature 

does not depend on Kz or Dz.  

For a highly focused laser beam (a = 0) equation (3.6) has analytical solution for the 

temperature along the principal axes  
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As it was the case with the isotropic thin sheet, the phase and the natural logarithm of 

the temperature amplitude multiplied by x  or y  have a linear dependence on the 

distance in such a way that the product of the slopes is equal to -πf/Dx or -πf/Dy, 

indicating that it is independent of heat losses. Accordingly, the thermal diffusivity 

along the principal axes can be obtained. Note that the analytical solution has been 

found only for the principal axes, so that only the diffusivity along that axes can be 

retrieved. 

ii) Thermally thick film. 

If the material is thermally thick ( fDzz πµ /=>>ℓ ) the temperature of the 

illuminated surface is given by  
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Numerical simulations of equation (3.8) indicate that in the absence of heat losses, 

the natural logarithm of the temperature amplitude multiplied by x or y and the phase 

have a linear dependence on the distance with the same slope -
xDf /π  or -

yDf /π . For non-negligible heat losses, both slopes are modified in such a way 

that their product is not independent of heat losses. Anyway, as in the case of 

isotropic samples, the effect of heat losses in thick samples is almost negligible. 

3.2.2. Filaments 

A. Monofilament 

We study now the thermal diffusivity measurement of filaments. We extend the 

theoretical model proposed by Barkyoumb and Land [46] to include heat losses by 

the three mechanisms: convection, radiation and conduction to the gas. 

We illuminate the samples with a modulated (frequency f) line focused beam (Figure 

3.5) and, as for sheets, we consider filaments as isotropic, opaque and infinitely long 

samples. 

 

 

 

 

 

 

Figure 3.5: Line beam illuminating a filament (left). Cross section of the 

filament (right). 
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The laser linear power density is 
0P  (W/m) with a Gaussian profile of radius a (at 

21 e ), so that the incoming flux at the sample surface is:  
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In order to obtain the filament temperature field, we resolve the Helmholtz equation 

(2.11) in cylindrical coordinates, ( ) ( )φ,, zrTrT acac =� , for both the sample (i=s) and 

the gas (i=g):  

0
11 2

2

2

2

2

22

2

=−
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

ii

iiii T
z

TT

rr

T

rr

T σ
φ

   (3.10) 

We can solve equation (3.10) working in the Fourier space, where 
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with λ as the Fourier variable. 

Accordingly, the Helmholtz equation in terms of the temperature Fourier transform 

is: 
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By using the separation of variables method, i.e. )(),(),,( φλφλ Φ= rRrt , equation 

(3.12) reduces to the following two equations: 
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Equation (3.13a) is the modified Bessel’s differential equation, whose solutions are 

the modified Bessel functions [33] )( rI in δ  and )( rK in δ . On the other hand, the 

solution of equation (3.13b) is the exponential function φine , with Zn∈ . Therefore, 

temperature fields for the gas and the sample are: 
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where only solutions with a physical meaning have been considered. An and Bn are 

again constants to be determined by the boundary conditions. 

All heat losses considered, temperature and heat flux continuity at the filament 

surface (r = b) write: 
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So as to solve it, we apply the Fourier transform to the beam flux and the Fourier 

expansion to the angular component: 
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As a result, we obtain the temperature fields for the gas and the sample: 
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where 
nI '  and 

nK '  are the derivatives of the modified Bessel functions 
nI  and 

nK , 

respectively. It is worth mentioning that, as we found for sheets (3.1), the heat losses 

different mechanisms, G and H, contribute independently to the temperature field, so 

that they may be considered or not according to requirements.  

Since infrared thermography deals with surface temperature maps, let us particularize 

the filament temperature field (3.16b) to the surface (r = b) temperature of the 

filament:  
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Besides, being thin samples the target of the research, we focus the study on 

thermally thin filaments, where the radius is much smaller than the thermal diffusion 

length, fDb πµ /=<< . At this extreme case, only the term n = 0 contributes to 

the temperature. Hence, the approximations [33] below for small arguments of the 

Bessel functions and their derivatives may be applied: 
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Hence, the resulting temperature for thin filaments is: 
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which becomes independent of the angle φ. 

Let us analyze now from equation (3.18) how thermal diffusivity might be retrieved 

from infrared thermography measurements, and moreover, how the different 

contributions to the heat losses affect the measurements for these thin filaments. 

Considering firstly the adiabatic case, G=0 and H=0, together with an ideal focusing 

(a = 0) of the laser beam, the surface temperature becomes 
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which represents a plane thermal wave propagating along the z axis. It is easy to 

retrieve the thermal diffusivity value by means of the slopes method, as both the 

phase and the natural logarithm of the amplitude show a linear behaviour as a 

function of the distance to the heating spot, whose slopes are  

ln( )/ Tm f D mψ π= − =      (3.20) 

which are the same as for sheets in the adiabatic case. We may see these parallel 

straight lines in black in Figure 3.6. 
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Regarding the case of heat losses by convection and radiation, G=0 and H≠0, and 

again considering ideal focusing of the laser beam (a = 0), we find 
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Here, the phase and the natural logarithm of the amplitude still show a linear 

behaviour with the distance to the heating spot, but the slopes are no longer parallel 

as they are affected by heat losses by convection and radiation. However, as we 

reviewed for sheets (2.46), the independence of the product of slopes from heat 

losses holds,  

)ln( Tm × mψ = - πf/D     (3.22) 

so that the thermal diffusivity value retrieval by the slopes method is still possible. 

Figure 3.6 shows in red the straight lines corresponding to this case, where the slopes 

are clearly deviated from the adiabatic case (in black). 

Concerning the real case of a filament with all the heat losses considered, G≠0 and 

H≠0, no simple equation has been found, so equation (3.18) is depicted. Figure 3.6 

shows in blue lines the surface temperature of a thin filament as a function of the 

distance to the heating spot, including the conduction to the gas losses in addition to 

convection and radiation previously represented in red. We may clearly note the 

effect is so huge that even linearity is lost, as it happened for films, so it is not 

possible to retrieve the diffusivity by linear methods. 
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Figure 3.6: Surface temperature simulation as a function of the distance to the 

heating spot for a 60 µm diameter filament (D = 0.15·10-6 m2/s, K = 0.2 W/mK) 

at a modulation frequency f = 0.1 Hz.  Different situations are represented: 

without heat losses (black lines), with convection and radiation losses (h = 15) 

(red lines) and with heat losses by the three mechanisms (blue lines). 

   

Figure 3.7: Surface temperature simulations as a function of the distance to the 

heating spot for: on the left, 200 µm diameter filament (D = 0.15·10-6 m2/s, K = 

0.2 W/mK) at f = 0.1 Hz; on the right, 60 µm diameter filament (D = 23·10-6 

m2/s, K = 91 W/mK) at f = 0.1 Hz. Different situations are represented: without 

heat losses (black lines), with convection and radiation losses (h = 15) (red lines) 

and with heat losses by the three mechanisms (blue lines). 
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Figure 3.7 shows, for the case of filaments, the same effect on the surface 

temperature of thickness and conductivity as for films in Figure 3.3. On the left, we 

observe the temperature for a thicker sample, where the effects are smaller but by no 

means negligible. On the right, a much higher conductivity filament temperature is 

simulated showing again a smaller effect. It is worth noting that blue lines do not 

seem to lose linearity in this case, but unfortunately the slopes changes do not 

compensate so as to cancel the heat looses effect and retrieve the right diffusivity. 

B. Two-layer filament 

We study now the case of a coated cylinder with an inner layer (s1) of radius b1 and 

an outer layer (s2) of outer radius b2, as shown in Figure 3.8, surrounded by gas. 

 

 

 

 

 

 

 

 

Figure 3.8: Line beam illuminating a two-layer filament (left). Cross section of 

the filament (right). 
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Temperatures in each layer and in the surrounding gas may be written as 
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where
nA , 

nB , 
nC  and 

nD  are constants to be determined through the boundary 

conditions below: 
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By tightly focusing the laser beam (a=0) on a thermally thin coated cylinder, and 

neglecting the conduction to the gas ( 0=G ), the surface temperature becomes:  
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By comparing equation (3.23) with equation (3.21) it can be concluded that the two-

layer filament behaves as a monofilament with effective thermal conductivity (KII) 

and thermal diffusivity (DII), which follow the in-parallel thermal resistor model [47]. 

In the particular case of a thin tube whose inner core is empty, i.e. K1 = 0, equation 

(3.23) reduces to 
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If compared this expression above with equation (3.21), it can be stated that the 

surface temperature of a thin tube behaves as that of a solid one with the same 

thermal properties but an equivalent radius 'b .  

3.3. Experimental setup  

This chapter deals with the thermal diffusivity measurement of thin films and 

filaments by means of point-like illumination. As the slopes method states, it is 

possible to retrieve lateral thermal diffusivity values from a surface temperature 

mapping at a fixed frequency of the modulated illumination. We have proved 

theoretically the dramatic influence of conductivity to the gas when working with 

thin low conductivity films and filaments, so that, performing the experiments in 

vacuum is proposed in order to avoid both conduction and convection losses. Thus, 

in this section our experimental set up needed for the accurate measurement of thin 

films and filaments thermal diffusivity is presented. 

In Figure 3.9 a general scheme of the measuring set up is shown, from the thermal 

wave excitation in a sample, till the information recording and processing. As we 

may observe, the heating source is an acousto-optically modulated laser beam 
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focused onto the sample by a spherical or cylindrical lens. The samples are placed 

inside a vacuum chamber. After heating the sample, the thermal wave generated at 

the surface is propagated along the whole material, and infrared radiation is emitted. 

An infrared camera records that emitted infrared radiation, and the information, fed 

into a lock in module associated with the camera and connected to a PC, is 

demodulated to finally obtain the amplitude and phase of the oscillating component 

of the sample surface temperature. 

 
 

 

 

 

 

 

Figure 3.9: General scheme of the measuring set up. 

In Figure 3.10 we can see a photo of the full set up in the laboratory, with all the 

components labelled and explained in detail below. 

On the right, we find the heating source, a CW diode pumped doubled Nd:YAG laser 

COHERENT model Verdi 6 W (532 nm). The next element in the setup is the 

acousto-optic modulator (AOM), ISOMET 1201E-1. Vertically oriented to suit the 

polarization direction of the laser, it receives a square signal from a generator and a 

piezoelectric transducer transforms it into acoustic waves on the crystal inside, which 

diffract the laser beam and let us get a modulation at the frequency set on the 

generator. The first maximum in the diffraction pattern has been chosen to be the 

modulated heating source by means of a pinhole. Once the beam is modulated, the 
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laser is focused onto the sample, film or filament, by a spherical or cylindrical lens, 

here of 10 cm focal length.  

 

Figure 3.10: Photo of the set up in the laboratory. 

Then, we find the vacuum chamber, where the samples are placed, connected to the 

vacuum pump LEYBOLD Trivac. The chamber is a product of our own design, 

simple and low cost, as we only need a medium vacuum room of a few centimeters. 

In Figure 3.11 (left) we may see a photo, where we observe it is a vacuum cross 

chamber, which consists of four 1 inch ports with a length between opposite ports of 

3.5 inches. Two of the ports in one of the arms are dedicated to the pressure meter 

and the vacuum pump. The other two ports in the second arm are sealed with 

sapphire windows, transparent to both infrared and visible radiation. The laser beam 

enters the chamber through one of the windows and the infrared radiation coming 

from the sample crosses the second window before reaching the camera. The 

pressure in the vacuum chamber can be controlled between room pressure (10
3 

mbar) 

and 10
-3 

mbar. 
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Figure 3.11: 

samples (right)

 

 

 

 

 

 

Figure 3.12: 
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Figure 3.11: Photo of the whole vacuum chamber (left) and the place for the 

samples (right). 

  

Figure 3.12: Photo of the exit with a sample holder and a Cu filament inside
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of the whole vacuum chamber (left) and the place for the 

of the exit with a sample holder and a Cu filament inside. 
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It is in the edge of the port, close to the exit window, where the samples are located, 

as shown in Figure 3.12, in order to collect the most of the infrared radiation. A 

sample holder was designed according to the requirements of the studied samples. 

Thus, our model consists of two steel pieces of the port size, which trap the samples 

in between by means of four screws in the border. The holder has a hole in the 

middle to place the samples, which was ordered with different shapes and sizes, to 

suit each sample, large or short films or filaments. 

After heating the sample, it is still possible, mainly when working with filaments, 

that some part of the laser beam does not incise into the sample, so it continues 

straight to the camera. To prevent direct laser radiation from reaching and causing 

damage to the camera lens, a silicon (Si) window, opaque to our green laser but 

transparent to the infrared radiation, has been placed before the camera. 

The next step is the infrared radiation collection, here from the rear surface of the 

samples. We have used an infrared camera, CEDIP Jade J550M, with a detector 

array of 320x256 pixels of 30 µm pitch. The sensor material is InSb, which provides 

a detection waveband from 3.6 to 5.0 µm, as we may see in Figure 3.13. It may seem 

a problem that the measurements temperature range is the same as the room 

temperature, so that the camera might collect both the samples surface temperature 

and the room infrared radiation reflected in the sample surface. Thus, it would cause 

an apparent temperature of the samples different from real, in a grade depending on 

the samples characteristics. Indeed, the camera does collect extra room radiation, but 

actually it is not a problem for the measurements, as there is no need to know 

absolute values of the temperature, but only the temperature oscillation. That is why 

the constant contribution of the infrared radiation from the ambient does not affect 

the modulated measurements. Even the sometimes problematic Narcissus effect is 

avoided when working with modulated thermography. This effect happens when 

infrared radiation is emitted by the own detector, although it is cooled, reflected in 

the sample and collected by itself as if it had been emitted by the sample. The same 

reason applies here: as it is not a modulated contribution, it will not affect the 

measurements.  
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Figure 3.13: Spectral response of various infrared detectors. [Technical 

information from Hamamatsu] 

In addition to the previous characteristics, the infrared camera is provided with a lens 

of 50 mm focal length. That means a minimum working distance of 23.5 cm, what 

results in a spatial resolution of 137 µm/pixel. In other words, each pixel measures 

the average temperature over a square of 137 µm in side. 

Another important parameter, mainly when dealing with good thermal conductors, is 

the maximum frame rate, for this camera 170 Hz at full window. Nevertheless, it is 

possible to work under the subwindowing mode, which consists on reducing the 

picture size, so that the frame rate may be increased. This camera let us work with 

three different modes in addition to the full frame mode, which are the half frame 

(160x120), quarter frame (80x60) and custom size (64x8). This way, the frame rate 

increases up to a maximum of 4000 Hz.  

The Noise Equivalent Temperature Difference (NETD), the temperature needed to 

produce an incident signal equal to the internal noise of the detector, that is a 

parameter to express the thermal resolution, is for this camera lower than 25 mK. 
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However, it is still possible to reduce the noise in the measurements by increasing the 

number of frames recorded to later extract the information, as [48, 49]: 

2

r

Noise NETD
f t

=
⋅

    (3.24) 

where fr is the frame rate and t the integration time. Thus, by recording an average of 

4000 images per measurement, we have gotten noise levels as low as 1 mK. 

All the information recorded is directed to a lock-in module connected to a PC with a 

lock-in software provided with the camera. There, by means of a frequency reference 

from the AOM, the signal is demodulated into the amplitude and phase of the 

oscillating temperature of the sample surface. In Figure 3.14 images of the amplitude 

and phase of an anisotropic film are shown. As we may see, the software lets us 

select the information on amplitude and phase along the two principal directions of 

the material at the same time, so that we can easily apply the slopes method. 

Nevertheless, all possible profiles over the amplitude and phase maps are available. 
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Figure 3.14: Amplitude and phase images of the rear surface temperature of an 

anisotropic film. 
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3.4. Results and discussion 

As it was previously introduced, the thin films and filaments thermal diffusivity 

measurement at low frequencies requires that the model includes the contribution of 

heat losses, since they become significant at that range. As traditionally, the slopes 

method considers heat losses by convection and radiation, neglecting the contribution 

of heat conduction to the gas because of the low value of the gas thermal 

conductivity, and manages to retrieve the accurate value by means of the product of 

the slopes of the amplitude and phase representations as a function of the distance to 

the heating spot (2.46 or 3.22). Nevertheless, in spite of the good results for good 

thermal conductors [9-13] characterization, in the case of thin films and filaments of 

low thermal conductivity the method gives overestimated values of the thermal 

diffusivity, as found in literature [11, 12, 43] and measured experimentally, so it is 

clear that the method fails when dealing with such samples. As an approach to clarify 

the mechanism responsible for this overestimation, the influence of the traditionally 

neglected contribution of heat losses by conduction to the gas has been theoretically 

studied in section 3.2, showing a huge effect on the surface temperature results, such 

that the linearity of the temperature representations is lost and so the slopes method 

cannot apply. 

We can see an example of this effect in Figure 3.15, where the experimental results 

for the surface temperature of a 34 µm diameter PEEK filament measured at f=0.24 

Hz are shown. The measurements have been performed in air (solid symbols), where 

all possible heat losses contribute, and in vacuum (open symbols), where conduction 

to the gas and convection do not work. As the slopes method states, the phase and the 

natural logarithm of the amplitude must present a linear behaviour with the distance 

to the heating spot. However, we can see that only for the measurement in vacuum 

(open symbols) they exhibit the linear behaviour, even though they are not parallel, 

as heat losses by radiation remain. For the results in air, on the contrary, they show a 

loss of linearity, and therefore it is not possible to apply the slopes method to retrieve 

the correct diffusivity value. 
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Figure 3.15: Amplitude (squares) and phase (circles) experimental results of the 

surface temperature of a 34 µm diameter PEEK filament measured at f=0.24 Hz 

in air (solid symbols) and in vacuum (open symbols). 

In order to check experimentally that the neglected heat conduction to the gas is 

responsible for the overestimation in thermal diffusivity retrieval by the slopes 

method when working in air, we measure the thermal diffusivity of a 25 µm PEEK 

film at a frequency of 0.12 Hz inside a vacuum chamber as a function of the 

pressure, Figure 3.16. In solid symbols the experimental diffusivity values obtained 

by the slopes method are represented, once corrected the heat losses by convection 

and radiation by means of the equation (2.46). The red line represents the theoretical 

simulation of the diffusivity value considering heat losses only by convection and 

radiation, which are cancellable, so that the correct value, independent of the 

pressure, is obtained. The blue line, on the other hand, accounts for the contribution 

also of the heat losses by conduction to the gas, including the thermal conductivity of 

the gas dependence on the pressure [50]. Although we know this mechanism curves 

the expected straight lines, we have applied the slopes method, as it would have been 

done experimentally, to obtain a diffusivity value. As we may observe, the 

simulation perfectly fits the experimental results.  
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Figure 3.16: Thermal diffusivity of a 25 µm thick PEEK film as a function of 

the pressure. Solid symbols correspond to experimental results, measured at a 

frequency of 0.12 Hz, and lines are the theoretical simulations under the model 

considering only convection and radiation (red) and the model including 

conduction to the gas (blue). 

Therefore, we can confirm it is the heat conduction to the gas the mechanism 

responsible for the overestimation in the thermal diffusivity value of thin films and 

filaments of low conductivity when measured in air, as the slopes method cannot be 

correctly applied for curved lines.  

Even so, it is worth noting that the effect obtained, and so the retrieved value, is not 

only due to the conduction to the gas, but to all the three mechanisms together. 

Convection and radiation change the slopes value, but they do not curve the 

representations, it is the conduction to the gas who does it. However, the whole effect 

is a contribution of all of them, as we may see in Figure 3.17. Black lines represent 

the adiabatic simulation for the surface temperature of a 25 µm thick PEEK film at 

0.12 Hz, parallel straight lines as expected. Green lines stand for the heat looses 

contribution of only the conduction to the gas, curved as shown before. Lastly, blue 

lines account for the model considering the three of the heat losses mechanisms, also 

curved but higher effect than only with the conduction to the gas contribution. We 
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can see that experimental results from measurements in air, symbols, fit the model 

including all contributions, not the one considering only the conduction to the gas. 
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Figure 3.17: Surface temperature representations of a 25 µm thick PEEK film at 

frequency of 0.12 Hz. Solid symbols correspond to experimental results, 

measured in air. Lines stand for theoretical simulations: in black it is shown the 

theoretical adiabatic behaviour, green lines correspond to the heat losses model 

considering only conduction to the gas, and in blue, the model including all heat 

losses.  

Hence, we have identified the problem and developed a model that fits the 

experimental results. Although the slopes method is not valid to retrieve diffusivity 

values for thermally thin films and filaments of low conductivity if measured in air, 

nonlinear methods could be applied to obtain them. Nevertheless, we prefer using 

linear methods, the slopes method, despite the drawback of performing the 

measurements in vacuum. 

Below, Figure 3.18, some examples of experimental measurements of these kind of 

samples, in air and in vacuum, are shown together with the theoretical simulations by 

this model. 
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Figure 3.18: Surface temperature representations of a 25 µm diameter steel 

(AISI-302) filament at frequency f=0.48 Hz (left) and a 60 µm diameter human 

hair at frequency f=0.12 Hz (right). Lines represent the theoretical simulations 

according to the model in air (blue, h=25) and in vacuum (red, h=6) with DAISI-

302=3.6 mm2/s and Dhair=0.14 mm2/s. Solid symbols correspond to experimental 

results in air while open symbols stand for measurements in vacuum.  

As we may observe, these two cases of thin filaments of low conductivity are deeply 

affected by heat losses, but even so, the model fits the experimental results both in 

case of air and of vacuum. In air (solid symbols) the representations are curved, as 

expected by the model (blue lines). It is not possible to use the slopes method to 

obtain a diffusivity value, but the only option would be a nonlinear fit. In vacuum 

(open symbols), the results remain straight, although not parallel, as it is also 

considered in the model (red lines). The slopes method does apply now to 

compensate the heat losses by radiation that still remain in vacuum to retrieve a 

correct diffusivity value, resulting so DAISI-302=3.6 mm
2
/s and Dhair=0.14 mm

2
/s. 

Thus, we can establish a reliable method to determine diffusivity values even for 

thermally thin samples of low conductivity. That consists of performing 

measurements in a vacuum environment of at least 10
-3

 mbar, and applying the 

slopes method to the results by means of the product of the amplitude and phase 

representations slopes to cancel the effect of radiation heat losses. 
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Additionally, we confirm experimentally, as it was proved theoretically, Figures 3.6 

and 3.7, that the thickness and the conductivity show a high influence on the 

magnitude of the overestimation. 

Table 3.1 summarizes a collection of experimental data on different shapes and 

thicknesses of the same material, PEEK, whose diffusivity literature value is 0.19 

mm
2
/s [42]. Measurements have been performed in air, wrongly applying the slopes 

method, and in vacuum, doing it correctly. For the thickest film, there is scarce 

difference with the literature value. However, it is clearly shown that the thinner the 

sample the higher the overestimation when measured in air, for both films and 

filaments. In vacuum, on the contrary, the right value is found for all film cases. 

Regarding the filaments, the value obtained in vacuum is rather higher than the 

expected value. But the results become independent of the filament diameter, so that 

the problem cannot be related to heat losses. In fact, it has been demonstrated that 

crystalline polymers increase their thermal diffusivity after drawing process [51, 52], 

and these PEEK filaments, whose degree of crystallinity has been measured to be 

45%, are obtained by extrusion. Thus, we attribute the high value of the measured 

diffusivity to the structural changes induced during the fabrication process of the 

filaments.  

Shape 
D [mm2/s]  

Air 

D [mm2/s]  

Vacuum 

Film ℓ= 250 µm 0.20 0.19 

Film ℓ= 125 µm 0.26 0.19 

Film ℓ= 75 µm 0.30 0.19 

Film ℓ= 25 µm 0.45 0.19 

Filament 2b = 150 µm 0.75 0.50 

Filament 2b = 34 µm 1.2 0.50 

Table 3.1: Thermal diffusivity of several PEEK samples measured in air and in vacuum. The 

uncertainty is 5%.  

Last, a collection of the samples measured in order to obtain accurate diffusivity 

values is presented in Table 3.2. All of them have been measured in vacuum and the 

values have been retrieved by the slopes method.  
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Material Shape 
D [mm2/s] 

This work 

D [mm2/s] 

Literature 

Cu Film ℓ= 100 µm 122 116 

Ni Film ℓ= 100 µm 22 22 

Ni Film ℓ= 10 µm 21 22 

AISI-302 Film ℓ= 100 µm 3.8 3.7-4.0 

PEEK Film ℓ= 250 µm 0.19 0.19 

PEEK Film ℓ= 125 µm 0.19 0.19 

PEEK Film ℓ= 75 µm 0.19 0.19 

PEEK Film ℓ= 25 µm 0.19 0.19 

Cu Filament 50 µm 120 116 

Ni Filament 125 µm 19 22 

Ti Filament 125 µm 8.8 9.0 

AISI-302 Filament 125 µm 3.8 3.7-4.0 

AISI-302 Filament 25 µm 3.6 3.7-4.0 

AISI-302 Filament 10 µm 3.6 3.7-4.0 

Carbon Fiber T650/35 Filament 7 µm 6.4 8.8 

Carbon Fiber P100 Filament 10 µm 310 325 

PEEK Filament 150 µm 0.52 0.19 

PEEK Filament 34 µm 0.52 0.19 

Human hair Filament 60 µm 0.14 - 

Table 3.2: Therrmal diffusivity for several thin films and filaments, measured in vacuum with an 

error of 5%, and values found in literature [42, 45, 53-55] .  

As we may observe, the agreement with the literature values is very good for both 

good and poor thermal conductors. The only discrepancy appears for the PEEK 

filaments, but the difference has been already attributed to the degree of crystallinity 

of these samples. It is worth mentioning the result obtained for the human hair. 

Although no reliable thermal diffusivity is available in the literature, the very low 

value we have obtained is consistent with the combination of the low thermal 

diffusivity of the keratin (the material the hair is made of) and the complicated 

internal structure of hair, with many layers introducing thermal resistances, which 

reduce the thermal diffusivity [56]. 

Thus, after identifying the problem and establishing a method to perform reliable 

measurements, we have been able to determine diffusivity values for samples whose 

diffusivities range between 0.14 and 310 mm
2
/s and that are as thin as 7 µm. 

Therefore, we have been able to overcome the problem of overestimation when 

measuring thin samples of poor thermal conductors. 
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According to the theoretical results obtained in section 3.2.1.B, the slopes method 

can also be used to measure the thermal diffusivity of anisotropic films along the 

main axes contained in the surface. Hence, we have been able to characterize the 

thermal diffusivity tensor of various anisotropic materials: a 100 µm thick film of 

pyrolytic graphite (PG), a 30 µm thick film of pyrolytic boron nitride (PBN), and a 

175 µm thick carbon fiber reinforced polymer composite (PEEK). Results are shown 

in Table 3.3.  

Material Shape 
D [mm2/s] 

This work 

D [mm2/s] 

Literature 

PEEK composite Film ℓ= 175 µm 
5.5 

0.55 

6 

0.4 

    

Pyrolytic graphite (PG) Film ℓ= 100 µm 
203 

1.6 

215 

1.5 

    

Pyrolytic boron nitride (PBN) Film ℓ= 30 µm 
65 

1.2 

- 

- 

Table 3.3: Thermal diffusivity of various anisotropic samples measured in vacuum with an error of 

5%, and values found in literature[45, 53, 54].  

 

Figure 3.19: Surface phase thermogram of a PEEK composite sample, at a 

frequency f = 0.48 Hz  

 



Chapter 3 

78 

As an example, Figure 3.19 shows the surface phase thermogram corresponding to 

the PEEK composite sample, at a modulation frequency of 0.48 Hz, where elliptical 

isophases, characteristic of anisotropic materials, can be clearly observed. Due to the 

very high thermal anisotropy ratio of these samples, different modulation frequencies 

must be used to measure the two principal thermal diffusivities accurately. That way, 

the lower (higher) thermal diffusivity was measured at modulation frequencies below 

(above) 1 Hz. The corresponding thermal diffusivity values obtained along the two 

principal directions were 5.5 and 0.55 mm
2
/s, which are in good agreement with the 

values of the diffusivity obtained for this sample using the mirage technique [57]. 

Similarly, for PG and PBN, frequencies ranging from 5 to 100 Hz are better suited 

for the highest thermal diffusivity measurements (203 mm
2
/s for PG and 65 mm

2
/s 

for PBN). Actually, using lower frequencies leads to boundary effects. On the 

contrary, for the lowest thermal diffusivity (1.6 mm
2
/s for PG and 1.2 mm

2
/s for 

PBN) frequencies below 3 Hz are used to avoid diffraction effects.  

To verify also the ability of the slopes method to retrieve the effective thermal 

diffusivity of tubes and coated filaments, as demonstrated theoretically in section 

3.2.2.2, we have used a commercial hypodermic needle with an outer diameter of 

414 µm and an inner diameter of 256 µm. We have obtained a thermal diffusivity of 

3.5 mm
2
/s, a typical value of stainless steel. Then, we have covered some needles 

with a layer of different thicknesses of a commercially available spray paint (matt 

black), in order to obtain increasing volume fractions of the coating layer: 0.14, 0.24, 

0.46, 0.63 and 0.83. The results of the effective thermal diffusivity for the samples 

kept in vacuum are represented by solid symbols in Figure 3.20. The continuous line 

corresponds to the simulated value of the theoretical in-parallel thermal resistor 

model, using Dneedle = 3.5 mm
2
/s, Kneedle = 15 W/mK, Dpaint = 0.2 mm

2
/s and Kpaint = 

0.3 W/mK, which are the typical values of spray paint. 

The agreement between the experimental values and the prediction confirms the 

ability of the slopes method to measure the effective thermal diffusivity of coated 

filaments. 
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Figure 3.20: Effective thermal diffusivity of a painted hypodermic needle as a 

function of the paint volume fraction. Solid symbols are the experimental results 

and the continuous line corresponds to the simulated thermal diffusivity using 

the in-parallel thermal resistor model, using Dneedle = 3.5 mm2/s, Kneedle = 15 

W/mK, Dpaint = 0.2 mm2/s, Kpaint = 0.3 W/mK. 

As a further application of this, and concerning about the unability of lock-in 

thermography (as well as all transient experiments) to measure thermal 

conductivities unless a reference is used, we have measured the effective thermal 

diffusivity of a hypodermic needle filled with water in order to obtain the thermal 

conductivity of the needle. As a first step, the thermal diffusivity of the empty needle 

has been obtained. Then, the effective thermal diffusivity of the needle filled with 

water has been measured and the thermal conductivity of the needle retrieved. Two 

hypodermic needles of different outer and inner radii have been used, the first with a2 

= 207 µm and a1 = 105 µm, and the second with a2 = 157 µm and a1 = 65 µm. The 

lateral scans of Ln(T) and ψ for the thickest needle are shown in Figure 3.21. The 

thermal diffusivity of both empty needles is the same, 3.6 mm
2
/s, while the effective 

thermal diffusivities of the needles filled with water have resulted 2.6 mm
2
/s and 2.8 

mm
2
/s, respectively. By using the expression of the effective thermal diffusivity of a 

coated cylinder and using the thermal properties of water (Dwater = 0.144 mm
2
/s, 

Kwater = 0.60 W/mK), the thermal conductivity of the needle has been obtained: 
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Kneedle = 14 W/mK, with an uncertainty of 10%. This value is close to the typical 

value of the thermal conductivity of stainless steel. On the other hand, it is worth 

noting that the uncertainty depends on the thickness of the tube wall: the thinner the 

wall the more accurate the retrieved thermal conductivity is. 
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Figure 3.21: Lateral dependence of Ln(T) and ψ for a hypodermic needle with 

an outer diameter of 414 µm and an inner diameter of 210 µm. Measurements 

were performed for the empty needle (open symbols) and for the needle filled 

with water (solid symbols). 
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4. Semitransparent samples: thermal 

diffusivity and optical absorption 

coefficient simultaneous 

measurements 

4.1. Introduction 

In this chapter Photothermal radiometry (PTR) will be used. As there is no need to 

record the full image of the surface temperature, but only the temperature of a small 

area over the surface, a monolithic infrared (IR) detector is selected, since it presents 

a better signal to noise ratio than the detectors of the camera and results cheaper. 

Modulated PTR has been a technique widely used to measure the thermal diffusivity 

of a large variety of materials [9, 30, 34, 37, 61-63]. Besides, by selecting a focused 

or plane light beam, the in-plane or in-depth thermal properties of anisotropic 

materials may be obtained, respectively [54]. 

In addition to this, some photothermal techniques (photoacoustic spectroscopy or 

mirage effect) have proven to be very accurate in measuring the optical absorption 

coefficient of gases, liquids and solids, competing with success against optical 

techniques in the extreme cases of weakly or highly absorbing materials [14-16]. 
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In this chapter, a systematic study of modulated plane PTR to retrieve simultaneously 

and accurately both the in-depth thermal diffusivity (D) and the optical absorption 

coefficient (α) of homogeneous samples is performed, as a first step, stating the 

limits of the technique. 

Further in the study, multilayered samples are considered. Since the seminal work by 

Mandelis and co-workers [17] modulated PTR has been used for thermal 

conductivity depth profile reconstruction of heterogeneous samples such as surface 

hardened steels [18-24], functionally graded materials [25] and partially cured dental 

resins [26]. In the last years, two works dealing with the application of modulated 

PTR to the simultaneous reconstruction of the in-depth varying absorption 

coefficient and thermal diffusivity of semitransparent heterogeneous samples have 

been published [27, 28]. 

Here, it is studied the modulated PTR capability to obtain simultaneously α and D in 

multilayered materials by applying the thermal quadrupole method. The thermal 

quadrupole method, introduced in Chapter 2, has been applied in the framework of 

heat conductive transfer to calculate the surface temperature of opaque multilayered 

samples [29] and to calculate the combined radiative and conductive heat transfer in 

semitransparent bulk materials [30]. Now, the method is extended to calculate the 

surface temperature of multilayered semitransparent samples in a compact way. 

For both homogenous and multilayered samples, the theoretical model for modulated 

plane PTR is studied first, including some disturbing effects modifying the samples 

surface temperature, such as heat losses, multiple reflexions of the incident light, 

transparency of the samples to the infrared and lateral heat diffusion. Then, the PTR 

measuring setup is shown. Last, a large collection of samples of all optical 

possibilities are measured to prove the validity of the models and establish the 

conditions and limits to perform simultaneous accurate α and D measurements by 

modulated PTR. Also, two applications on the multilayers are presented, one of them 

showing the effect of paint layers on the PTR measurements and the other allowing 

the characterization of thermal contact resistances between layers.  
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4.2. Theoretical model 

In this section, the theoretical model of light absorption and heat propagation through 

semitransparent sheets is studied. First, an homogenous sample is considered, for 

which the temperatures at front and rear surfaces are calculated and thus, an optical 

classification and the possible parameters to be characterized according to it are 

established. Then, the thermal quadrupole method is introduced to study multilayer 

semitransparent samples, developing a model to express the temperatures at front and 

rear surfaces in a compact way. Last, some effects modifying the temperatures are 

studied, such as heat losses, multiple reflexions of the incident light, transparency of 

the samples to the infrared and lateral heat diffusion. 

4.2.1. Homogeneous solids 

Let us consider a semitransparent sheet of thickness ℓ, illuminated by a plane light 

beam of wavelength λ and intensity 
0I (W/m

2
) modulated at a frequency f (ω=2πf). 

The geometry of the problem is shown in Figure 4.1.  

According to the Beer-Lambert Law, the light intensity inside the sample is 

( ) ( )1 z

oI z I R e α−= − , where R and α are the optical reflection and absorption 

coefficients of the sheet at the wavelength of the light beam, respectively. By 

resolving again the Helmholtz equation (2.11) with heat flux continuity at the front 

and rear surfaces in absence of heat losses, the oscillating component of the 

temperature results [64] 

( )
( )

( ) ( ) ( )2

2 2

1
( )

2

z z z

o

e e e e e e e e eI R
T z

e eK

α σ σ α σ σ σ σ α

σ σ

σ
α α

σ σ α

− − − − − −

−

 − + − + − −
=  −−  

 

ℓ ℓ ℓ ℓ ℓ ℓ

ℓ ℓ
(4.1) 
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where /i Dσ ω=  is the thermal wave vector and K and D are the thermal 

conductivity and thermal diffusivity of the sample, respectively.  

 

 

 

 

 

 

 

 

 

Figure 4.1: Semitransparent sheet of thickness ℓ illuminated by a plane light 

beam.  

In modulated PTR, the voltage in the detector is recorded, and normalization 

procedures are needed in order to suppress the instrumental factor, i.e. the 

dependence of the detection electronics (IR detector, preamplifier and lock-in 

amplifier) on frequency. Several normalization procedures have been previously 

proposed: self-normalization, which consists of dividing the PTR signals recorded at 

the rear and front surfaces [65]; comparison with a reference material [66]; obtaining 

the instrumental factor by impinging the laser beam directly on the IR detector; and  

comparison of the PTR signal of the sample with and without a backing liquid [62]. 

After testing these normalization procedures the self-normalization method has been 

selected. Although it is not useful for semiinfinite (very thick) samples, the self-

ℓ 0 

ℓ 
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normalization method provides the highest signal to noise ratio and amplitude and 

phase contrast, as well as some other advantages that will be shown below.   

Hence, the ratio at the rear and front surfaces is:  

( ) ( ) ( )
( )

( )

(0)
2

n

e e e e e e e e e
T

T
T

e e e e e

α σ σ α σ σ σ σ α

α σ σ σ σ

σ
α

σ
α

− − − − − −

− − −

− + − + −
= =

− − + −

ℓ ℓ ℓ ℓ ℓ ℓ ℓ ℓ ℓ

ℓ ℓ ℓ ℓ ℓ

ℓ
  (4.2) 

As can be seen, the self-normalized temperature depends on / Dℓ  and on αℓ, but 

does not depend on K, and therefore, both α and D can be retrieved simultaneously.  

Three main cases can be distinguished:  

(1) If the sheet is opaque (αℓ →∞) and thermally thick ( / Dℓ →∞) the self-

normalized temperature (4.2) reduces to 2
n

T e σ−≈ ℓ , indicating that both the natural 

logarithm of the self-normalized temperature amplitude, Ln(Tn), and its phase, Ψ(Tn), 

are parallel straight lines when plotted against f , with the same slope 

/m Dπ= −ℓ . This equation provides a well-known method to measure the thermal 

diffusivity of opaque sheets [67]. 

(2) If the sample is transparent (αℓ →0) equation (4.2) becomes 1nT ≈ , 

showing that both surfaces are at the same temperature.  

(3) For semitransparent samples, experimental results of the self-normalized 

temperature Tn must be fitted to the equation (4.2).  

The three cases are shown in Figure 4.2, where calculations have been performed for 

a sample of D=0.5 mm
2
/s and ℓ=0.5 mm. Note that for the opaque case the linear 

behaviour only holds for 1.6f ≥ , i.e. when the material is thermally thick (µ ≤ ℓ 

/2). 
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Figure 4.2: Simulations of the natural logarithm of the amplitude and phase of 

the self-normalized temperature as a function of the square root of the frequency 

for a 0.5 mm thick glass sheet (D = 0.5 mm2/s). Three absorption coefficients 

have been considered: an opaque material (α→∞, continuous lines), a transparent 

material (α →0, dashed lines) and a semitransparent material (α = 8 mm-1, dotted 

lines). 

Figure 4.3 serves as an optical classification of a sample depending on its α and ℓ 

values. For αℓ < 0.8 the sample is said to be transparent, showing almost flat Ln(Tn) 

and Ψ(Tn). In this case, no information on the thermal and optical properties can be 

obtained from photothermal measurements. For αℓ > 10 the sample behaves as 

opaque, but only for αℓ > 30 both Ln(Tn) and Ψ(Tn) are completely parallel straight 

lines when plotted as a function of f . In this case, only the thermal diffusivity of 

the sample can be obtained. For 0.8 < αℓ < 10 the sample is semitransparent, and 

both α and D can be retrieved when fitting Ln(Tn) and Ψ(Tn) to the equation (4.2).  

It is worth mentioning that the transition between the three regions is not abrupt, the 

values αℓ = 0.8 and αℓ = 10 are indeed soft barriers. Note also that the same sheet can 

vary its classification depending on its thickness. In fact, a material can be classified 

as opaque, semitransparent or transparent by appropriately selecting its thickness. 

For instance, a copper film 1 nm thick is transparent, while a glass slab 1 km thick is 

opaque. However, concerning the application of photothermal techniques, this 
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thickness selection has severe restrictions. Actually, the thickness must range 

between 0.2 and 4 mm in order to have a good signal to noise ratio together with a 

high enough amplitude and phase contrast. 
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Figure 4.3: Optical classification of solids according to the pair (α, ℓ).  

Figure 4.4: Behaviour of the natural logarithm of the amplitude (left) and phase 

(right) of the normalized temperature of semitransparent sheets as a function of 

the square root of the frequency. Simulations have been performed for 

/ 0.7D =ℓ s1/2, with increasing values of αℓ. 
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The range 0.8 < αℓ < 10 may seem very restrictive, but we have to remember that the 

transmission is given by e ατ −= ℓ , so that this method allows us to measure the 

optical properties of samples with transmission coefficients ranging from 0.5 down 

to 4×10
-5

. 

Note also that for 10 < αℓ < 30, Ln(Tn) and Ψ(Tn) are almost straight lines (see, for 

instance, the behaviour for αℓ = 14 and 16 in Figure 4.4), since the curved part 

appears at high frequencies, where the photothermal signal is so small that these 

frequencies are not usable. However, these straight lines are not parallel, and only the 

slope of Ln(Tn) should be used to obtain the diffusivity value. 

In Figure 4.4 it is studied in detail the evolution of Ln(Tn) and Ψ(Tn) as a function of 

f  for a sample with / 0.7D =ℓ s
1/2

. Different values of αℓ are considered, from 

zero (transparent) to infinite (opaque). As we may observe, for αℓ = 5.9243, 12.211, 

18.455…, the amplitude of the normalized temperature goes to zero (the sharp dips 

in Figure 4.4 left).  These αℓ values correspond to the solutions of the transcendent 

equation {Re(Tn) = 0, Im(Tn) = 0}, where Re is the real part and Im is the imaginary 

part. It is worth mentioning that these αℓ values are independent of the diffusivity. 

Those sharp dips are produced at frequencies satisfying αµ = 1, i.e. equal thermal 

diffusion length and optical penetration depth. Figure 4.4 right shows the behaviour 

of the normalized phase. As can be seen, at high frequencies it converges to different 

asymptotic values depending on the αℓ value: to zero for αℓ < 5.9243, to -2π for 

5.9243 < αℓ < 12.211, to -4π for 12.211 < αℓ < 18.455, etc.  

4.2.2. Multilayered solids 

Let us now consider a semitransparent multilayered sample, as it is depicted in 

Figure 4.5, illuminated by a plane light beam, modulated at a frequency f. Each layer 

is characterized by its thermal conductivity (Ki), thermal diffusivity (Di), optical 

absorption coefficient (αi) and thickness (ℓi).  
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Figure 4.5: Diagram of a semitransparent multilayered sample. 

The one-dimensional (1-D) heat diffusion equation for each layer writes 

2
2

2

i i
i i

i

d T Q
T

dz K
σ− = −      (4.3) 

where /i ii Dσ ω=  is the thermal wave vector, and 
( )

2

i iz zi
i i

I
Q e

αα − −=  is the heat 

source, being Ii the incident light intensity reaching layer i, that in the absence of 

internal reflections is given by ( )1 1 2 2 1 1... i i

i oI I e
α α α − −− + + += ℓ ℓ ℓ

. The solution to the equation 

(4.3) is usually expressed in terms of exponential functions [64] 

( )( ) ( )
( ) i ii i i i

z zz z z z

i i i iT z A e B e C e
ασ σ − −− − −= + +    (4.4) 

where Ai and Bi are constants obtained from the boundary conditions and   

( )2 22

i i
i

i i i

I
C

K

α
σ α

=
−

     (4.5) 

However, let us work for this case of multilayer samples under the thermal 

quadrupole method, where it is more convenient to use hyperbolic functions: 
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[ ] [ ] ( )
( ) ( ) ( ) i iz z

i i i i i i i iT z A Sinh z z B Cosh z z C e
ασ σ − −= − + − +

  (4.6) 

[ ] [ ]{ } ( )
( ) ( ) ( ) i iz zi

i i i i i i i i i i i i i

dT
z K K ACosh z z B Sinh z z K C e

dz

αφ σ σ σ α − −= − = − − + − +
 

where φ is the heat flux.  

By applying the equations (4.6) at the front (zi) and rear (zi+1) surfaces of layer i, a 

matrix relationship between temperature and heat flux at both surfaces is obtained: 

1

1

( ) ( )

( ) ( )

i i i i i i i

i i i i i i i

T z a b T z X

z c d z Yφ φ
+

+

−    
=    −    

   (4.7) 

where ( )i i i ia d Cosh σ= = ℓ , 
( )i i

i

i i

Sinh
b

K

σ
σ

=
ℓ

, ( )i i i i ic K Sinhσ σ= ℓ , 

( ) ( ) i ii
i i i i i i

i

X C Sinh Cosh e
αα σ σ

σ
− 

= − + 
 

ℓ
ℓ ℓ  and 

( ) ( ) i i

i i i i i i i i i iY C K Sinh Cosh e
ασ σ α σ α − = − + 
ℓ

ℓ ℓ . 

Note that if the sample is opaque, then 0i iX Y= = and we obtain the model for a 

sheet that we got in section 2.5. According to the equation (4.7), the temperatures at 

the front and rear surfaces of layer i can be obtained provided the heat fluxes at its 

surfaces are known.  

The same semitransparent multilayered sample above may be also illuminated by a 

modulated focused laser beam of Gaussian profile of radius a (at 1/e
2
 of the 

intensity). For each layer the heat source writes 

( )
( )

2 22 /

2

2
i i

r a

z zi
i i

Pe
Q e

a

αα
π

−
− −= , where Pi 

is the incident power reaching layer i, which in the absence of reflection is given by 

( )1 1 2 2 1 1... i i

i oP P e
α α α − −− + + += ℓ ℓ ℓ

.  
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As it was checked in Chapter 2, by working in the Haenkel space for the focused 

illumination, where the temperature 
0

( , ) ( ) ( , )i o iT r z J r T z dδ δ δ δ
∞

= ∫ , it becomes easy 

to obtain the temperature for focused illumination out of the temperature for the 

plane case. Thus, with the changes summarized in Table 2.1, the Hankel transform of 

the temperature and the normal heat flux, provided the equations (4.6) result: 

[ ] [ ] ( )' ' '( , ) ( ) ( ) i iz z

i i i i i i i iT z A Sinh z z B Cosh z z C e
αδ β β −−= − + − +

 (4.8) 

[ ] [ ]{ } ( )' ' '( , ) ( ) ( ) i iz zi
i i i i i i i i i i i i i

dT
z K K ACosh z z B Sinh z z K C e

dz

αφ δ β β β α − −= − = − − + − +
 

where 2 2 2

i i
β σ δ= + .

 

Hence, a matrix relationship between the Hankel transforms of the temperature and 

heat flux at both front (zi) and rear (zi+1) surfaces of layer i is obtained: 

' ' '

1

' ' '

1

( , ) ( , )

( , ) ( , )

i i i i i i i

i i i i i i i

T z a b T z X

z c d z Y

δ δ
φ δ φ δ

+

+

    −
=     −    

   (4.9) 

where ( )' '

i i i ia d Cosh β= = ℓ , 
( )' i i

i

i i

Sinh
b

K

β
β

=
ℓ

, ( )'

i i i i ic K Sinhβ β= ℓ , 

( ) ( )' ' i ii
i i i i i i

i

X C Sinh Cosh e
αα β β

β
− 

= − + 
 

ℓ
ℓ ℓ  and 

( ) ( )' ' i i

i i i i i i i i i iY C K Sinh Cosh e
αβ β α β α − = − + 
ℓ

ℓ ℓ . 

The same way as for plane, if the sample is opaque ' ' 0
i i

X Y= = , the model in Section 

2.5 is obtained. Also, according to the equation (4.9), the Hankel transform of the 

temperatures at the front and rear surfaces are obtained provided the Hankel 

transforms of the normal heat fluxes are known. 
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For an anisotropic sample, for which the heat propagation is three-dimensional, one 

can proceed in a similar way but using the Fourier transform instead of the Hankel 

transform, as in Section 3.2.1.B.  

Focusing on the case of plane illumination, it may be simplified the equation (4.7) 

and expressed as  

( )i i i iH M O P= −      (4.10) 

where Hi is the input matrix, Oi is the output matrix, Mi is the thermal matrix and Pi 

is optical matrix.  

To obtain a single matrix equation relating temperature and heat flux at the front (z = 

z1 = 0) and rear (z = zN+1 = ℓ) surfaces we need to know the relationship between 

temperature and heat flux at each intermediate boundary. Two possibilities are 

considered: 

(1) If there is a perfect thermal contact between the layers, temperature and 

heat flux continuity can be applied: 
1 1 1( ) ( )i i i iT z T z+ + +=  and 

1 1 1( ) ( )i i i iz zφ φ+ + += , and 

therefore Oi = Hi+1. By applying this equation to each layer we obtain   

1

1

N

N N p p

p

H O P
=

= −∑ℤ ℤ

   

(4.11) 

where 
1

p

p i

i

M
=

= ∏ℤ , 
1

1

1

(0)

(0)

T
H

φ
 

=  
 

 and 
( )

( )

N

N

N

T
O

φ
 

=  
 

ℓ

ℓ
.  

If heat losses are negligible:
1(0) ( ) 0Nφ φ= =ℓ

 

 (2) A thermal resistance Ri,i+1 is introduced to account for the lack of 

adherence between the layers i and i+1. This means that the heat flux continuity still 

holds but there is a jump in temperature given by 
1 1 1 , 1 1 1( ) ( ) ( )i i i i i i i iT z T z R zφ+ + + + + += + , 
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and therefore 
, 1 1i i i iO H+ += ℜ , where 

, 1

, 1

1

0 1

i i

i i

R +
+

 
ℜ =  

 
. This means that the matrix 

equation relating temperature and heat flux at the front (z = 0) and rear (z = ℓ) 

surfaces is similar to the equation (4.11) but changing 
pℤ , that is product of the 

thermal matrices, by '

1 1,2 2 2,3 3 1 1,......p p p p pM M M M M− −= ℜ ℜ ℜℤ . Hence, 

' '

1

1

N

N N p p

p

H O P
=

= −∑ℤ ℤ

   

(4.12) 

4.2.3. Effects to consider 

It is worth studying some additional effects that modify the temperature distribution 

inside the sample and/or the signal recorded by the infrared detector in a modulated 

PTR experiment. Among them, let us pay special attention to heat losses, multiple 

reflexions of the incident light, transparency of the samples to the infrared and lateral 

heat diffusion. 

A. Heat losses  

As it was done in Section 2.5, it is easy to consider heat losses in terms of 

quadrupoles, as in equation (2.50). For the simple case of a semitransparent sheet of 

thickness ℓ illuminated by a modulated plane light beam of intensity Io: 

If the sample is adiabatically isolated from its surroundings, (0) ( ) 0φ φ= =ℓ , the 

matrix expression relating the temperature at the sample surfaces writes  

(0) ( )

0 0

T a b T X

c d Y

−    
=    −    

ℓ
    (4.13) 

If heat losses are present, the heat fluxes at the front and rear surfaces are 

respectively: (0) (0) (0)f g gh T K Tφ σ= − −  and ( ) ( ) ( )r g gh T K Tφ σ= +ℓ ℓ ℓ , where 
fh  
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and 
rh  are the combined heat transfer coefficients by radiation and convection at the 

front and rear surfaces, respectively. The last term in each expression is the heat flux 

by conduction to the surrounding gas, which is proportional to the surface 

temperature since the gas is considered infinitely thick. According to the equation 

(4.7) the matrix expression relating the temperatures at the surfaces can be written as 

1 0 1 0 1 0 1 0 1 01 0(0) ( )

1 1 1 1 110 0f g g g g f g gr

T a b T a b X

h K K h Khc d c d Yσ σ σ
                   

= −                   
                   

ℓ

 

(4.14) 

where subscript g stands for the surrounding gas. As can be seen, the influence of 

conduction to the gas and convection and radiation are separated in independent 

matrices.  

Figure 4.6 and 4.7 show the influence of heat losses on the surface temperature, for 

two different normalization procedures: the selected self-normalization and 

normalization with a reference. For all the simulations the following parameters have 

been used: Dg = 22 mm
2
/s, Kg = 0.026 W/mK, and hf = hr = 15 W/m

2
K, which is a 

good upper estimation for room temperature measurements [68]. 

In the case of self-normalization the ratio of the front and rear surface temperatures is 

considered: ( ) / (0)nT T T= ℓ . This is a suitable method for thin sheets. In Figure 4.6 

the natural logarithm of the self-normalized temperature amplitude, Ln(Tn), and its 

phase, Ψ(Tn), are plotted against f . Simulations have been performed for a 

semitransparent sheet with the following parameters: D = 0.5 mm
2
/s, K = 1.0 W/mK, 

ℓ = 0.5 mm, and α = 3 mm
-1

. Blue lines correspond to the effect of heat losses. As it 

is well known, the effect of heat losses is stronger at low frequencies and for poor 

thermal conductors [69]. However, in self-normalization both Ln(Tn) and Ψ(Tn) 

converge to zero at low frequencies and, therefore, the effect of heat losses becomes 

almost negligible. 
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Figure 4.6: Simulations of the self-normalized temperature as a function of the 

square root of the frequency for a sheet with D = 0.5 mm2/s, K = 1.0 W/mK, ℓ = 

0.5 mm, and α = 3 mm-1.Black lines correspond to the absence of heat losses. 

Blue lines stand for the effect of heat losses with hf = hr = 15 W/m2K. 

The second normalization procedure consists on comparing the sample temperature 

at the front surface with that of a reference: ' (0) / (0)n refT T T= . In black lines in 

Figure 4.7, a very thick opaque sheet with D = 1.0 mm
2
/s, K= 2.5 W/mK is compared 

with a very thick and opaque reference sample of Dref = 0.5 mm
2
/s and Kref = 1.0 

W/mK. The dotted lines correspond to the deviation due to heat losses. As can be 

seen, only at frequencies below 0.1 Hz must the influence of heat losses be taken into 

account. Note that in absence of heat losses the amplitude of '

n
T  is equal to eref/e = 

0.566, where /e K D=  is the thermal effusivity, and Ψ( '

n
T ) = 0. This means that, if 

the sample and the reference are thermally thick, only the thermal effusivity of the 

sample can be obtained. 

In red lines of Figure 4.7, we show the same calculations as in black lines, but ℓref = ℓ 

= 1 mm. As before the dotted lines indicate the effect of heat losses, which are 

negligible above 0.1 Hz. Note that the amplitude of '

n
T  converges to eref/e = 0.566 at 
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high frequencies, and to ( ) ( )/ 0.80
ref

c cρ ρ =ℓ ℓ  at low frequencies, where 

/c K Dρ =  is the heat capacity. In its turn, Ψ( '

n
T ) converges to zero, both at low and 

high frequencies. From the shape of the normalized temperature at intermediate 

frequencies, both D and K can be retrieved. 

Finally, in blue lines, we show the same calculations as in red, but for 

semitransparent sample and reference, with αref = α = 3 mm
-1

. As can be seen, the 

information on the optical properties appears at frequencies higher than 0.1 Hz, 

where the effect of heat losses is negligible.  
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Figure 4.7: Simulations of the normalized temperature with a reference with the 

following data: Dref = 0.5 mm2/s, Kref = 1.0 W/mK, D = 1.0 mm2/s, K= 2.5 

W/mK. In black, both are opaque and thick; in red, both are opaque and ℓref = ℓ = 

1 mm; and in blue, both are semitransparent αref = α = 3 mm-1 and ℓref = ℓ = 1 

mm. Solid lines correspond to the absence of heat losses, while dotted lines stand 

for the effect of heat losses with hf = hr = 15 W/m2K. 

As the effect of heat losses is only significant below 0.1 Hz and most experimental 

measurements with modulated PTR are performed at frequencies above this limit, 

heat losses will not be considered in the remaining of the Chapter. 
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B. Multiple reflections of the incident light 

If the light incident light crossing the sample reaches the rear surface before 

vanishing it will be reflected back and forth contributing to increase the sample 

temperature. Accounting for the multiple reflections of the light beam inside the 

sheet of thickness ℓ, the intensity distribution can be written as  

( ) ( )( )2

2 2

1 e

1

z z

oI R e R e
I z

R e

α α α

α

− −

−

− +
=

−

ℓ

ℓ
    (4.15) 

Then, proceeding as in reference [64], the sample temperature is obtained 

( )
( )

( ) ( ) ( )2

2 2

1
( )

2

z z z

o

e e e e e e e e eI R
T z

e eK

α σ σ α σ σ σ σ α

σ σ

σ
α α

σ σ α

− − − − − −

−

 − + − + − −
= − −−  

 

ℓ ℓ ℓ ℓ ℓ ℓ

ℓ ℓ

( )
( )

( ) ( ) ( )2 2

2 2

1 e

2

z z z

o

e e e e e e e e eI R R

e eK

σ α σ σ α σ σ σ α
α

σ σ

σ
α α

σ σ α

− − −
−

−

 − + − + − −
−  −−  

 

ℓ ℓ ℓ ℓ ℓ ℓ
ℓ

ℓ ℓ
(4.16) 

where the second term is the correction with respect to the equation (4.1). Note that 

when ℓ →∞ the equation (4.15) reduces to equation (4.1) since e
-2αℓ

 →0. From the 

equation (4.16) the normalized temperature Tn = T(ℓ)/T(0) is obtained. In Figure 4.8 

we show the effect of multiple reflections on the normalized temperature for the 

same glass sheet of Figure 4.2, with R = 0.04 (corresponding to normal incidence on 

a typical glass with a refraction index of 1.5) and α = 2 mm
-1

, i.e. αℓ = 1. Although 

the contribution of the multiple reflections is small, it should be taken into account in 

order to retrieve accurate α and D values. However, numerical simulations indicate 

that this effect is significant only for samples with αℓ < 2.  
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Figure 4.8: Simulations of Ln(Tn) and Ψ(Tn) as a function of f  for a glass 

sheet of D = 0.5 mm2/s, ℓ = 0.5 mm, R = 0.04 and α = 2 mm-1. Black lines 

correspond to the simulations without multiple reflections and green lines to 

those with multiple reflections of the exciting light beam. 

C. Transparency to the infrared radiation 

The modulated voltage produced by the infrared detector is proportional to the 

oscillating surface temperature only if the sample is completely opaque to the 

infrared wavelengths (in the case of HgCdTe detectors from 2 to 12 µm). This 

condition is fulfilled for metals and alloys, but not for most glasses and polymers. 

Actually, the visual appearance is not a reference to predict the infrared behaviour. 

For instance, Ge is opaque for visible wavelengths, but completely transparent above 

2 µm. Besides, some metallic oxides look black but they are translucent at infrared 

wavelengths. In consequence, it is necessary to evaluate the influence of the 

transparency to the infrared wavelengths on the measured voltage.  

If the sample is semitransparent to the infrared spectrum the signal recorded by the 

infrared detector comes, not only from the sample surface, but from the whole 

sample thickness. If we define βIR as the effective infrared absorption coefficient for 

the sample (averaging the sample behaviour from 2 to 12 µm) [70] the signal 

recorded by the detector placed in front of the illuminated surface is given by [71] 
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( ) ( )
0

0 IR z

IRS C e T z dzββ −= ∫
ℓ

    (4.17) 

where C is a constant including the emissivity of the sample, the sensor area and 

detectivity, and the temperature derivative of the Plank function at room temperature. 

T(z) is the sheet temperature given by the equation (4.1). This means that we are 

assuming that heat losses associated to the infrared emission from the sample are so 

small that they do not affect the temperature field (note that this assumption holds for 

the oscillating temperature, but not for the dc temperature rise of the sheet, which is 

highly limited by heat losses [72]). Similarly, the signal recorded by the detector 

placed in front of the non-illuminated surface is given by 

( ) ( ) ( )
0

IR z

IRS C e T z dz
ββ −= ∫

ℓ
ℓ

ℓ    (4.18) 

By substituting equation (4.1) into equations (4.17) and (4.18) and solving the 

integrals analytically, the normalized signal is obtained 

( )

(0)
IR

n

S A
S e

S B

β−= = ℓℓ
    (4.19) 

where A and B are given by 

( )
( )( ) ( )( ) ( )( )1 1 1IR IR IR

IR IR IR

e e e e e e
A e e e

α σ α σ σ σ
σ β β σ β ασ

σ β σ β α α β

− − − −
+ − −− − −= − + − + −

− + − −

ℓ ℓ ℓ ℓ ℓ ℓ
ℓ ℓ ℓ

 

( )( ) ( )( ) ( )( )1 1 1IR IR IR

IR IR IR

e e e e e e
B e e e

α σ α σ σ σ
σ β σ β α βσ

β σ σ β α α β

− − − −
− − + − +− − −= − + − + −

− + +

ℓ ℓ ℓ ℓ ℓ ℓ
ℓ ℓ ℓ

 

In Figure 4.9 it is shown the effect of the infrared transparency on the normalized 

signal Sn for the same glass sheet of Figure 4.2, with α = 5 mm
-1

 and different values 

of βIR ranging from 0 to ∞. Note that, even for an almost IR opaque material, with βIR 

values around 30 mm
-1

, its influence on Sn is not negligible, mainly at the high 

frequency tail, and therefore equation (4.19) must be used instead of equation (4.2). 
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It is interesting to point out that when exchanging the α and βIR values the normalized 

signal Sn remains the same.

 

Figure 4.9: Simulations of Ln(Sn) (left) and Ψ(Sn) (right) as a function of f  

for a glass sheet with D = 0.5 mm2/s, ℓ = 0.5 mm, R = 0.04 and α = 5 mm-1, and 

different values of βIR ranging from 0 (transparent to IR) to ∞ (opaque to IR). 

So as to fit the experimental data a theoretical expression of the normalized PTR 

signal combining the multiple reflections of the incident light and the transparency to 

the IR radiation will be used 
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   (4.20) 

where A1 and B1 are given by 
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D. Lateral heat diffusion 

Experimentally speaking, it is usual to use a defocused Gaussian laser beam to 

simulate a plane beam. But to approve the approximation, it becomes important to 

quantify the effect of using a Gaussian laser beam instead of a completely flat light 

source, i.e. the disturbing effect of 2-D heat propagation. Simulations are performed 

for a stainless steel slab (D = 4.0 mm
2
/s, K = 15.0 W/mK, ℓ = 1.0 mm), considering 

two cases: the self-normalization measurement, and normalization with a reference. 

In Figure 4.10 left, it is shown the self-normalized amplitude and phase as a function 

of the square root of the frequency. Black lines correspond to a plane light beam and 

green lines to a Gaussian beam with a = 5 mm. As can be seen, the influence of the 

lateral heat diffusion in the slopes, and therefore, in the thermal diffusivity of the 

steel sample is almost negligible.  

Figure 4.10:  Influence of the laser spot size on the normalized temperature for a 

stainless steel slab (D = 4.0 mm2/s, K = 15.0 W/mK, ℓ = 1.0 mm). On the left, 

self-normalized temperature and on the right, normalization with reference 

(vitreous carbon: D = 6.0 mm2/s, K = 6.3 W/mK, ℓ = ∞). The laser beam radius is 

a = ∞ (plane beam, black lines), a = 10 mm (pink lines), a = 5 mm (green lines). 
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In Figure 4.10 right, it is shown the result of the normalization of the steel sample 

with a reference made of vitreous carbon (D = 6.0 mm
2
/s, K = 6.3 W/mK, ℓ = ∞). 

Black lines stand for a plane light beam, pink lines for a = 10 mm and green lines for 

a = 5 mm. Now, the influence of lateral heat diffusion is not negligible, and to 

retrieve the thermal properties of the steel sample accurately, the size of the laser 

spot must be included in the fitting procedure. 

It is clear then, that selecting the self-normalization method is a good choice, not 

only for providing the highest signal to noise ratio and amplitude and phase contrast, 

but also for avoiding having to take into account the effect of heat losses and lateral 

heat diffusion on the PTR measurements. 

4.3. Experimental setup  

This chapter focuses on the thermal and optical characterization of semitransparent 

samples. By exciting them with a plane light beam, the in-depth properties can be 

studied. Thus, with the aim of measuring at the same time thermal diffusivity (D) and 

optical absorption coefficient (α), a photothermal radiometry (PTR) set up is used. 

It is shown in Figure 4.11 a general scheme. The sample is excited by means of a 

modulated laser beam defocused to reproduce a plane source. Then, the light is 

absorbed either at the surface or inside of the sample and a thermal wave is 

generated. That thermal wave is propagated through the material and, at the end, 

infrared radiation is emitted from the surface. The infrared radiation is collected by a 

system of mirrors and focused into a single detector, as it is photothemal radiometry. 

Then, the signal is preamplified and the information fed into a lock-in amplifier, 

which demodulates it to provide the amplitude and phase data of the sample surface 

temperature. As can be observed, two possible excitations are considered, 

corresponding to front and rear surfaces. For normalization purposes, self-

normalization, both must be performed.  



 Semitransparent samples: D and α simultaneous measurements 

  103 

 
Figure 4.11: General scheme of the experimental setup. 

In Figure 4.12 we may see a photo of the experimental PTR setup in the laboratory, 

with the components labelled and explained below. 

The heating source is the same as the one used in photothermal thermography for 

thin films and filaments in Chapter 3, a 532 nm frequency doubled Nd:YAG laser 

modulated by an acousto-optic modulator. The sample is excited, either the front or 

the rear surface, by a plane beam. For that, the laser beam is expanded by a spherical 

lens to a diameter of at least 1 cm, to guarantee 1D heat propagation. 

The infrared radiation emitted from the sample is collected with the system shown in 

Figure 4.13. A 60º gold coated off-axis parabolic mirror collects the infrared 

radiation emitted from a point in the surface of the sample, the focal point of the 

mirror, and directs the radiation through the other mirror to a cooled HgCdTe sensor, 

located at the focal point the mirror. The sensor provides a detection waveband from  
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Figure 4.12: Photo of the set up in the laboratory. 

 

Figure 4.13: Zoom on the radiation collecting system.  

2 to 12 µm. An active area of 1 mm
2
 has been chosen since it has the highest product 

detectivity × area. A Ge window, which is opaque to visible wavelengths but 
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transparent from 2 to 12 µm is usually placed in front of the detector to prevent the 

green light of the laser from reaching the IR sensor, but here, a Ge based spectral 

filter has been used to reduce the transmission region of the detector to the waveband 

5 to 12 µm, as some studied filter samples are semitransparent between 2 and 5 µm. 

Next, the voltage produced by the detector is preamplified and fed into a digital lock-

in amplifier connected to a PC. Representations of the amplitude and phase of the 

signal as a function of the modulation frequency let us retrieve thermal and optical 

properties of the samples. 

In PTR, where the signal is recorded as a function of the frequency, it becomes 

necessary to normalize the measurements in order to suppress the instrumental 

factor, i.e., the dependence of the detection electronics on the frequency. As it was 

introduced before, self-normalization is selected for our purposes, as it provides the 

highest signal to noise ratio and amplitude and phase contrast. 

On the other hand, several authors have pointed out that the measured PTR voltage is 

affected by coherent noise generated by stray-light heating the IR optics and cut off 

filter [73-75]. However, they experimentally showed that this effect is only 

significant for modulation frequencies exceeding 1 kHz. As all the measurements in 

this work have been performed at frequencies far below this value, this coherent 

noise has not been considered. 

4.4. Results and discussion 

With the aim of testing the ability of PTR to retrieve simultaneously and accurately 

both optical absorption coefficient α and thermal diffusivity D of semitransparent 

samples, a large collection of measurements have been performed on samples of all 

optical possibilities: opaque to visible and IR wavelengths, opaque to visible but 

semitransparent to IR, semitransparent to visible but opaque to IR and 

semitransparent to visible and IR. The results establish the conditions and limits to 

perform simultaneous accurate α and D measurements by modulated PTR. 
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Furthermore, semitransparent multilayer samples are also considered, and 

measurements on two applications are presented. One of them shows the effect of 

paint layers on the PTR measurements and the other presents the possibility to 

characterize thermal contact resistances between layers. 

All of the measurements have been performed under the self-normalization 

procedure, since as well as providing the highest signal to noise ratio and amplitude 

and phase contrast, it makes negligible the effect of heat losses and lateral heat 

diffusion on the PTR measurements.   

4.4.1. Homogeneous solids 

In order to verify the ability of modulated PTR to characterize the thermal diffusivity 

and the optical absorption coefficient of homogenous solids we have performed 

measurements on a wide set of samples, which are summarized in Figure 4.14 

according to their optical properties and so, to the parameters available from PTR 

measurements.  
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Figure 4.14: Optical classification of the materials measured in this work. 
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Multiple reflections of the incident light and transparency to the infrared radiation 

are by no means negligible, so all the measurements have been performed taking 

them into consideration. 

Figure 4.15 presents the experimental results for all the cases. In Figure 4.15 the 

upper left graph, results for two samples are shown, vitreous carbon and carbon fiber 

reinforced (CFR) composite, both opaque to visible and IR wavelengths. As can be 

seen, both Ln(Sn) (solid squares) and Ψ(Sn) (open squares) are parallel straight lines 

as a function of f , except at low frequencies where the material is thermally thin.  

In Table 4.1 we may see the thermal diffusivity values obtained from the slopes 

using the expression /m Dπ= −ℓ  for Ni, SiC (38% porosity), vitreous carbon, 

AISI-304 stainless steel, CFR composite and PLLA composite. They are in good 

agreement with literature values. In this case, there are three reliability criteria when 

applying this method to retrieve the diffusivity value:  

(1) The parallelism of both straight lines.  

(2) The fit of the phase converging to 0 radians at f = 0 Hz. 

(3) The large range of linear behaviour (about 5-6 radians) before noise appears.  

The thermal diffusivity underestimation for Ni and AISI-304 is due to the painting 

layers used to increase both the absorption of the laser light and the IR emission. The 

effect of these layers will be discussed late under the thermal quadrupoles method. 

The experimental result of a Ge slab 3 mm thick is also shown in this graph. As this 

material is completely transparent at IR wavelengths, Ψ(Sn) is zero for all 

frequencies. However, Ln(Sn) is not zero, as it should be according to the theoretical 

model, but a constant value due to the different light intensity absorbed at both 

surfaces. No information on the thermal and optical properties of this material can be 

obtained. 
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Figure 4.15: Experimental values of Ln(Sn) (solid squares) and Ψ(Sn) (open 

squares) for materials with different optical properties. Up on the left, visible and 

IR opaque samples, together with Ge that is transparent to IR. Up on the right, a 

neutral density filter, opaque to IR, with three different thicknesses. Down on the 

left, LaMnO3 and CoO, which are opaque to visible but semitransparent to IR. 

Down on the right, coloured filters, which are semitransparent to visible and IR 

wavelengths. Continuous lines are the fittings to the equation (4.20). 

In Figure 4.15 the upper right graph, experimental results are presented for a neutral 

density filter of α = 2.33 mm
-1

 at 532 nm (Cary spectrometer) which is opaque to IR 

wavelengths above 5 µm. Three sheets of different thicknesses have been measured 

to test the reliability of the results. Continuous lines are the fittings to the equation 
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(4.20). The same D and α values for the three samples are obtained (see Table 4.1) 

inside the experimental uncertainty (5% and 10% respectively). The data in this 

graph indicate that if the sample is quite thick, the phase contrast is high but the 

signal to noise ratio is poor (noisy data), since the PTR voltage from the rear 

illumination measurements is very small (a few tens of µV). On the contrary, if the 

sample is too thin, the signal to noise ratio is high (noise free data), but the phase 

contrast is small (less than 1 rad in phase). In consequence, whenever the thickness 

of the sample under study can be selected, an intermediate thickness providing a 

good enough signal to noise ratio together with a quite high phase contrast (about 2 

radians) is the best choice. 

The graph down on the left refers to the experimental results for two metallic oxides, 

LaMnO3 and CoO, which are completely black, i.e. opaque to visible wavelengths. 

However, the shape of Ln(Sn) (solid squares) and Ψ(Sn) (open squares) indicates that 

these materials are semitransparent to IR wavelengths. The results of the fittings are 

shown in Table 4.1. The retrieved D values agree with the measurements performed 

using a photopyroelectric setup [76, 77]. 

Finally, measurements on six coloured filters with increasingly optical absorption 

coefficient at 532 nm have been also performed. The main difference with respect to 

the neutral density filters is that they are not completely opaque to IR wavelengths, 

so the experimental data must be fitted to the equation (4.20) with three unknowns: 

D, α and βIR. The results of the fittings are shown in Table 4.1, while the 

experimental results for three of them are plotted in Figure 4.15 down on the right. 

Note that for OG530, which is very transparent at 532 nm, it is used a quite thick 

sheet (2.20 mm) in order to increase the phase contrast as much as possible while 

keeping a good enough signal to noise ratio. Anyway, this sample is placed in the 

lowest limit of this method (αℓ ≈ 0.8). This is why the retrieved α value is the least 

accurate. However, it is worth noting that the D value is the same as for the other 

filters of the family, indicating that thermal diffusivity is obtained with higher 

accuracy than the optical absorption coefficient. 
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Figure 4.16 left presents the experimental PTR data for a composite material whose 

matrix is poly-L-lactide (PLLA) and the fillers are carbon nanotubes (0.75%). As can 

be seen, both Ln(Sn) (solid sqaures) and Ψ(Sn) (open squares) become flat at high 

frequencies, indicating that the sample is not completely opaque (i.e. it falls in the 

region 10 < αℓ < 30). However, a good fitting to the equation (4.20) cannot be 

obtained since the high frequency data are too noisy. According to the theory only 

the slope of Ln(Sn) has been used to retrieve D, whose value is given in Table 4.1. 

Figure 4.16: Experimental values of Ln(Sn) (solid squares) and Ψ(Sn) (open 

squares) for: Left, PLLA composite with 0.75% of carbon nanotubes, and Right, 

white paper and PEEK polymer.  

In materials like paper or polyether-ether-ketone (PEEK) there is not only light 

absorption, but light scattering as well. Accordingly, the Beer-Lambert law does not 

hold. This means that light propagation in turbid media must be used as the source 

term in the heat diffusion equation, instead of the equation (4.15) [78, 79]. It has 

been measured some white paper and PEEK sheets and then fitted the amplitude and 

phase data to the equation (4.20). The results are shown in Figure 4.16 right. In this 

case, the retrieved α is an effective value, combining both absorption and scattering 
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processes inside the material. Although a more complete model should be used, the 

obtained D value is in good agreement with literature values (see Table 4.1). 

Material 
ℓ 

[mm] 

D [mm2/s] 

This work 

D [mm2/s] 

Literature* 

α [mm-1] 

This work 

α [mm-1] 

Cary 
βIR [mm-1] 

Ni 1.03 18 22 - ∞ ∞ 
Porous SiC 1.63 7.2 8.0 - ∞ ∞ 
Vitreous C 1.34 6.0 6.0 - ∞ ∞ 

AISI-304 0.94 3.4 4.0 - ∞ ∞ 

CFR composite 0.85 0.51 0.50 - ∞ ∞ 

ND filter 3.31 0.59 0.5-0.6 2.05 2.33 ∞ 

ND filter 2.12 0.57 0.5-0.6 2.10 2.33 ∞ 

ND filter 1.04 0.54 0.5-0.6 2.10 2.33 ∞ 

Schott NG 1 0.478 0.48 0.5-0.6 10.5 11.1 ∞ 

Schott OG 530 2.20 0.51 0.5-0.6 0.27 0.38 19.0 

Schott OG 550 1.75 0.55 0.5-0.6 1.70 1.62 13.0 

Schott OG 570 0.538 0.50 0.5-0.6 4.80 4.82 32.0 

Schott OG 590 0.645 0.51 0.5-0.6 5.00 5.31 49.0 

Schott RG 610 0.611 0.50 0.5-0.6 5.85 6.18 27.0 

Schott RG 630 0.400 0.39 0.5-0.6 9.60 9.97 50.0 

LaMnO3 0.313 1.07 1.15 ∞ ∞ 8.50 

CoO 0.204 2.4 2.2 ∞ ∞ 4.50 

PLLA composite 0.460 0.10 - - - - 

Paper 0.247 0.16 0.144 8.10 - ∞ 

Paper 0.370 0.14 0.144 6.77 - ∞ 

PEEK 0.688 0.18 0.19 4.32 - 19.8 

Ge 3.0 - 35 - ∞ - 

Table 4.1: Thermal diffusivity (D), optical absorption coefficient (α) and IR absorption coefficient 

(βIR) of the measured materials. Uncertainty in D is 5% and α is 10%. *References [35, 42, 55, 62, 76, 

77, 80, 81]. 

As a final remark, it is worth making some considerations about the accuracy of the 

retrieved D and α values. In the case of opaque materials (both to visible and IR 

wavelengths), the parallelism of the straight lines of Ln(Sn) and Ψ(Sn) provides a 

good test of the reliability of the obtained value of D. Moreover, the thickness of the 

sample should be selected in such a way that the straight lines produce changes of 

more than 4 rads before the noise appears. If both conditions are fulfilled, the main 

source of error comes from the uncertainty in ℓ (surface roughness, lack of 

parallelism,…). Accordingly, for opaque materials, the uncertainty in thermal 

diffusivity is estimated to be ∆D ≤ 3%. For not completely opaque samples (10< αℓ 

<30), only the slope of Ln(Sn) can be used to retrieve the thermal diffusivity of the 
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sample. This means that the test of parallelism cannot be used, so that the estimation 

for the uncertainty in thermal diffusivity raises up to ∆D ≤ 5%. In the case of 

semitransparent samples (0.8< αℓ <10), both D and α can be obtained, but the 

accuracy is not the same all along that range. At low αℓ values (0.8< αℓ <2), the 

contrast in both Ln(Sn) and Ψ(Sn) is small (see Figure 4.4), reducing the accuracy of 

the retrieved D and α values. On the contrary, at high αℓ values (7< αℓ <10), the 

contrast is high, but the signal is small, reducing the signal to noise ratio and, 

therefore, the accuracy of the obtained D and α values. The most accurate results are 

obtained for intermediate αℓ values (4< αℓ <6), which produce a contrast between 2 

to 4 rads, while keeping a good enough signal to noise ratio. Note that, in most cases, 

it is possible to work within this intermediate range by selecting the sample thickness 

appropriately. In this intermediate range, the errors in thermal diffusivity and optical 

absorption coefficient are estimated to be ∆D ≤ 5% and ∆α ≤ 10%. The main sources 

of error are the uncertainty in ℓ, the effect of scattered light inside the sample, and, 

above all, that the model only takes into account an effective βIR value and not the 

complete IR spectrum from 5 to 12 µm. The reason for the uncertainty of α being 

higher than that of D is related to the fact that α is sensitive to the whole frequency 

scan of Ln(Sn) and Ψ(Sn), while D is mainly sensitive to low frequencies, where the 

IR signal is higher.  

4.4.2. Multilayered solids 

So as to obtain simultaneously thermal diffusivity D and optical absorption 

coefficient α in semitransparent multilayer samples by modulated plane PTR, a 

simple compact method has been developed theoretically in Section 4.2.2: the 

thermal quadrupole method. Now, two experimental applications are presented. One 

of them shows the effect of paint layers on the PTR measurements and the other one 

presents the possibility to characterize thermal contact resistances between layers. 

The first application of this matrix method attempts to quantify the effect of the usual 

practice of coating the sample surfaces with paint layers in order to increase the light 



 Semitransparent samples: D and α simultaneous measurements 

  113 

absorption and the IR emissivity. Equation (4.11) for a system of multiple layers with 

perfect thermal contact is used to represent the sample with paint layers at both sides. 

Figure 4.17 shows the effect of the presence of paint layers (Dpaint = 0.20 mm
2
/s and 

Kpaint = 0.40 W/mK) of different thicknesses in the self-normalized temperature of a 

Ni slab 1.03 mm thick (DNi = 22 mm
2
/s and KNi = 80 W/mK) using plane 

illumination. In absence of paint layers (black lines), Ln(Tn) and Ψ(Tn) are parallel 

straight lines from whose slope (m) the thermal diffusivity can be obtained: 

/m Dπ= −ℓ . The presence of two 1 µm thick paint layers (green lines), produces 

an increase of the slope, leading to an underestimation of the thermal diffusivity of 

the material if the equation above is directly applied, i.e.,using ℓ = ℓsample + ℓpaint. For 

10 µm thick paint layers (purple lines), even the parallelism of Ln(Tn) and Ψ(Tn) is 

lost. This is the reason why smaller values of the thermal diffusivity of Ni and AISI-

304 stainless steel than those found in literature were obtained (see Table 4.1). 
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Figure 4.17: Simulations of the self-normalized temperature as a function of 

f  for a Ni slab 1.03 mm thick with paint layers in each surface using plane 

illumination. Black lines ℓpaint = 0, green lines ℓpaint = 1 µm and purple lines ℓpaint 

= 10 µm. Upper and lower curves of each colour correspond to Ln(Tn) and 

Ψ(Tn),  respectively. 
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In Figure 4.18 left the error in the thermal diffusivity of opaque slabs due to the 

presence of thin paint layers at both surfaces as a function of the diffusivity of the 

sample is quantified. As before, the slope /m Dπ= −ℓ  is used to calculate the 

thermal diffusivity, where ℓ is the sum of the thickness of the sample and the 

thickness of the two paint layers. Simulations have been performed for various 

thicknesses of the paint layers whose thermal properties are: Dpaint = 0.20 mm
2
/s and 

Kpaint = 0.40 W/mK. In all the simulations the ratio / 0.5D =ℓ s
1/2 

is kept constant. 

As can be seen, the further the thermal diffusivities of paint and sample, the higher 

the error on the obtained thermal diffusivity of the sample. It is worth noting that 

even a 1 µm thick paint layer can produce a significant error on thermal diffusivity 

measurements. Moreover, these simulations show that using a coating of 

higher/lower thermal diffusivity than that of the sample introduces an 

overestimation/underestimation on the retrieved sample diffusivity. In particular, 

paint layers must be avoided for accurate modulated PTR thermal diffusivity 

measurements of good thermal conductors.  

 

Figure 4.18: Simulations of the error in the thermal diffusivity of opaque sheets 

due to the presence of a thin paint layer as a function of the thermal diffusivity 

using modulated PTR (left) or the flash method (right). Results for paint layers of 

1 µm, 5 µm and 10 µm are shown. 
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Anyway, it is surprising that in the laser flash method, where the front surface of an 

opaque sheet is illuminated by a brief light pulse and the temperature at the rear 

surface is recorded, the influence of the paint layers is almost negligible (see Figure 

4.18 right). 

The second application is the characterization of the thermal contact resistance 

between layers. Figure 4.19 shows in symbols the self-normalized PTR signal 

corresponding to a two-layer sample made of two neutral density filters (Edmund 

Optics, optical density 1.0) of the same thickness, ℓ = 1.04 mm, whose properties 

were measured and shown in Table 4.1 (D = 0.54 mm
2
/s, α = 2.10 mm

-1
 and βIR = ∞). 

In order to vary the thermal contact resistance, a plastic layer with a centred hole of 2 

cm of diameter was placed between the two glass sheets. Plastic films of the 

following thicknesses were used: 0 (no plastic film, plotted in black), 25 µm (in 

blue), 50 µm (in green) and 75 µm (in red). The glass sheets with the plastic films 

were pressed using two clips.  
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Figure 4.19: Modulated plane PTR measurements of the self-normalized 

temperature as a function of f  for a filter stack made of two equal neutral 

density filters (ℓ = 1.04 mm) with a holed plastic film as a barrier. The thickness 

of the plastic film is varied: 0 (no plastic, black), 25 µm (blue), 50 µm (green) 

and 75 µm (red). Continuous lines are the fittings to the equation (4.12). 
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Continuous lines in Figure 4.19 correspond to the simultaneous fitting of Ln(Tn) and 

Ψ(Tn) to the equation (4.12) with the thermal resistance R as the fitting parameter. As 

can be seen, the quality of the fitting is good and the retrieved thermal resistances are 

1.05×10
-4

, 7.6×10
-4

, 1.6×10
-3

 and 2.3×10
-3

 m
2
K/W. According to the expression R = 

ℓ/Kair, where Kair= 0.026 W/mK, these thermal resistances correspond to air layers of 

thicknesses 2.7 µm (no plastic film), 20 µm, 41 µm and 60 µm, which are close to, 

but a bit below, the geometrical values. This underestimation could be attributed to a 

real reduction of the air layer, since the clamping could decrease the plastic film 

thickness. 
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5. Conclusions 

The most important conclusions of the work developed and presented in this thesis 

are summarized below. 

Concerning research on free standing thin films and filaments: 

− A complete theoretical model including heat losses by the three mechanisms, 

convection, radiation and conduction, has been developed. 

− Heat conduction to the gas has been identified as the mechanism responsible 

for the loss of linearity of the expected straight lines obtained when applying 

the slopes method, leading to overestimation in thermal diffusivity. 

− Working in vacuum environment of at least 10
-3

 mbar has been proposed to 

avoid the disturbing effect of heat losses by conduction to the gas, avoiding at 

the same time heat losses by convection. The remaining heat losses by 

radiation can be cancelled by means of the product of the slopes 

corresponding to the amplitude and phase representations, allowing so the 

retrieval of the correct diffusivity value. 

− Experimental measurements have been performed in a large variety of 

samples, isotropic and anisotropic, obtaining reliable results for materials 

whose diffusivities range between 0.10 and 300 mm
2
/s and that are as thin as 

7 µm. 
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Regarding the thermal diffusivity and optical absorption coefficient simultaneous 

retrieval for semitransparent homogenous samples: 

− A complete theoretical model has been studied considering the effect of 

multiple reflexions of the exciting light beam and the transparency of the 

samples to the infrared radiation. 

− Self-normalization has been selected in order to suppress the dependence of 

the detection electronics on frequency. 

− Simultaneous measurements on thermal diffusivity, D, and optical absorption 

coefficient, α, have been performed for samples in the range 0.8 < αℓ < 10, 

what means achieving the retrieval of transmission coefficients from 0.5 to 

4·10
-5

. 

− Experimental results for a vast array of coloured filters of different 

thicknesses have been obtained, providing accurate D values and α results 

verified by means of optical methods. 

Relating to the D and α simultaneous measurement for semitransparent multilayer 

samples: 

− The Thermal Quadrupole Method has been extended to account for 

multilayer semitransparent samples, providing a compact method to calculate 

the surface temperatures of such samples.  

− The effect of paint coating the samples has been evaluated, quantifying the 

error on the retrieved sample diffusivity. 

− Thermal contact resistances between layers have been characterized for filter 

stacks. 

 

 

 



 Conclusions 

  119 

These conclusions lay the grounds for future research. Interests now focus on inverse 

methods development for reconstruction of continuously varying thermal diffusivity, 

D(z), and optical absorption coefficient, α(z), on multilayer semitransparent samples, 

such as functionally graded materials or partially cured resins.  

In addition, thermal properties, diffusivity and conductivity, of thin magnetic 

microwires, made of a metallic core with a glass coating, of diameters ranging from 

10 to 30 µm are now under study. 
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Resumen 

Esta tesis recoge el trabajo desarrollado de caracterización tanto térmica como óptica 

de materiales heterogéneos mediante Termografía Infrarroja Lock-in. 

La Termografía Infrarroja  Lock-in o modulada es una técnica sin contacto que 

permite, tras una previa excitación de la muestra de estudio, obtener las propiedades 

tanto térmicas como ópticas de la muestra y los defectos subsuperficiales que pudiera 

presentar, solamente con la imagen térmica de la temperatura superficial de la 

muestra.  

Perteneciente a la familia de las conocidas como Técnicas Fototérmicas, su 

fundamento se basa en el efecto fototérmico, que consiste en que un material absorbe 

un haz de luz de intensidad variable, y en consecuencia, se generara una onda 

térmica, que se propaga tanto por el material como por sus alrededores produciendo 

diversos efectos. Como la propagación depende de las propiedades y estructura 

interna del material, la detección de los efectos producidos por la onda térmica 

revelará dicha información.  

Esta técnica comenzó su andadura como Radiometría Fototérmica (PTR), donde un 

detector infrarrojo monolítico recoge la lectura de la oscilación de temperatura sobre 

un pequeño área de la superficie. En caso de ser necesario un mapa de la temperatura 

superficial de la muestra, hay que realizar un escaneo de la superficie punto por 
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punto, lo que se traduce en que ésta técnica requiere largos tiempos de medida, y por 

tanto queda relegada a los casos estrictamente necesarios. Cuando más adelante se 

desarrollaron las cámaras de vídeo infrarrojas de alta frecuencia y resolución 

espacial, la Termografía Infrarroja resurgió como herramienta para la rápida 

caracterización de materiales. 

Desde entonces, la Termografía Infrarroja ha sido ampliamente utilizada para medir 

propiedades térmicas de muestras con superficies planas y paralelas, en concreto 

difusividad térmica. El método tradicional de medida de difusividad en este tipo de 

materiales es el llamado “método de las fase”, que contempla dos opciones en 

función del tipo de iluminación modulada que se emplee.  

Por una parte, se pueden caracterizar muestras de espesor conocido mediante 

iluminación plana. En este caso, el campo de temperatura en la superficie no 

iluminada se mide en función de la frecuencia de modulación, y tanto la fase como el 

logaritmo neperiano de la amplitud de la temperatura oscilante se representan en 

función de la raíz de la frecuencia, mostrando ambas un comportamiento lineal de 

cuyas pendientes se puede extraer el valor de la difusividad perpendicular de la 

muestra.  

Por otra parte, también se puede utilizar iluminación focalizada, donde lo que se 

recoge es un mapa de la temperatura superficial de la muestra a una frecuencia de 

modulación fija. Esta vez, las representaciones de amplitud y fase en función de la 

distancia al punto de excitación también son lineales y permiten extraer de sus 

pendientes el valor de la difusividad térmica paralela del material. 

El reciente interés por la caracterización de propiedades térmicas de muestras de 

aplicación industrial ha conducido al estudio de muestras con geometrías más 

complejas, como varillas, cilindros, esferas, filamentos o láminas delgadas. 

En los dos últimos casos, se ha observado una sobreestimación de los valores de 

difusividad obtenidos al aplicar el método de las pendientes en muestras delgadas y 

de baja difusividad. En consecuencia, esta tesis se fija como primer objetivo el 
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esclarecimiento de las causas de la sobreestimación, y el desarrollo de un modelo 

teórico y un sistema experimental que permita la medida correcta de la difusividad en 

este tipo de muestras.  

Así pues, la investigación en este aspecto ha resultado en el desarrollo de un modelo 

teórico que incluye pérdidas de calor por los tres mecanismos: radiación, convección 

y conducción al gas. La contribución de las pérdidas de calor por conducción al gas, 

tradicionalmente despreciada por la baja conductividad del aire, ha sido identificada 

como el mecanismo responsable de la pérdida de linealidad de las esperadas rectas 

representaciones de la amplitud y fase de la temperatura superficial, conduciendo a 

una sobreestimación en el valor obtenido de la difusividad al aplicar el método de las 

pendientes.  

Para solventar el problema, se ha propuesto realizar las medidas experimentales en 

un ambiente de vacío de al menos 10
-3

 mbar, necesario para evitar el efecto de las 

pérdidas por conducción al gas y poder aplicar el método de las pendientes. Junto 

con la conducción al gas, el vacío también elimina la convección, pero no así la 

radiación, que persiste. Sin embargo, el método de las pendientes es capaz de 

cancelar el efecto de las pérdidas por radiación mediante el producto de las 

pendientes de las representaciones de amplitud y fase, dando lugar, por tanto, a la 

obtención de valores correctos de difusividad.  

Experimentalmente, se han realizado medidas en un amplio espectro de muestras de 

filamentos y láminas, tanto isótropas como anisótropas, permitiendo caracterizar 

materiales con difusividades entre 0.10 y 300 mm
2
/s de muestras tan delgadas como 

7 µm. 

Además de esto, algunas técnicas fototérmicas han probado su valía para medir 

correctamente el coeficiente de absorción óptica de gases, líquidos y sólidos, 

rivalizando con técnicas ópticas en los casos extremos de materiales poco o muy 

absorbentes. El segundo objetivo de esta tesis consiste, entonces, en realizar un 

estudio sistemático de la técnica PTR modulada plana para obtener simultáneamente 

y correctamente ambas, diffusividad en profundidad y coeficiente de absorción 
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óptica, de muestras semitransparentes homogéneas, desde un punto de vista tanto 

teórico como experimental, estableciendo las condiciones y límites para la aplicación 

de la técnica. 

Así, se ha estudiado un modelo teórico completo, considerando el efecto de las 

multiples reflexiones del haz excitador y la transparencia de las muestras a la 

radiación infrarroja. Se ha seleccionado el método de autonormalización para 

suprimir la dependencia del sistema electrónico con la frecuencia, y se han realizado 

medidas simultáneas de difusividad (D) y coeficiente de absorción óptica (α) para 

muestras en el rango 0.8 < αℓ < 10, que corresponde a determinar coeficientes de 

transmisión óptica de 0.5 a 4·10
-5

. Además, se ha medido un amplio número de 

filtros coloreados de diferentes espesores, obteniendo resultados precisos de 

difusividades y coeficientes de absorción óptica comprobados mediante métodos 

ópticos. 

Por último, se han considerado muestras multicapa. Tras los trabajos iniciales de 

Mandelis y colaboradores, la técnica PRT modulada ha sido empleada para la 

reconstrucción del perfil de conductividad en profundidad de muestras heterogéneas 

como aceros endurecidos, materiales funcionalmente graduados y resinas dentales. 

Además, se han publicado en los últimos años dos trabajos de investigación relativos 

a la aplicación del PTR modulado a la reconstrucción simultánea de coeficiente de 

absorción y difusividad variables en profundidad en muestras heterogéneas 

semitransparentes.  

En esta tesis, se estudia la posibilidad de obtener con PTR modulado ambas α y D 

simultáneamente en materiales multicapa semitransparentes mediante el Método de 

los Cuadrupolos Térmicos. Este método había sido aplicado en el marco de la 

conducción al cálculo de la temperatura superficial de materiales opacos multicapa y 

al cálculo de la combinación de radiación y conducción en materiales gruesos 

semitransparentes.  

Así pues, aquí el Método de los Cuadrupolos Térmicos se ha extendido a las 

muestras semitransparentes multicapa, proporcionando un método compacto para el 
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cálculo de la temperatura superficial. Además, se ha evaluado el efecto de las capas 

de pintura depositadas en ocasiones sobre ciertas muestras para aumentar tanto su 

absorción como emisión infrarroja, cuantificando el error cometido al determinar la 

difusividad del material. Asimismo, se han caracterizado las resistencias térmicas 

entre capas para apilamientos de filtros. 

La investigación realizada a lo largo de esta tesis continúa ahora con el desarrollo de 

métodos inversos de reconstrucción de perfiles de variación continua en profundidad 

de D(z) y α(z) en materiales multicapa semitransparentes, como los materiales 

funcionalmente graduados o las resinas dentales. 

Igualmente, se encuentran ahora en estudio las propiedades térmicas, difusividad y 

conductividad, de microhilos magnéticos compuestos por un núcleo metálico y un 

recubrimiento de vidrio, resultando diámetros de entre 10 y 30 µm. 
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