Teoremas sobre compacidad en el espacio proyectivo

Revista del Centro de Estudios Científicos de San Sebastián, 1935

- 1. Sea P_2 un triángulo proyectivo y e una recta de exclusión del mismo. Determinemos el polo A de e respecto de P_2 . Las rectas determinadas por A con cada uno de los vértices de P_2 dividen a éste en seis triángulos: P_1 ; P_2 ; P_3 ; P_4 ; P_5 ; P_6 , a cuyo conjunto designaremos por $\pi^{(1)}$. Respecto de cada uno de estos triángulos, hallemos el polo de e y obtendremos, seis puntos A_1 ; A_2 ; A_3 ; A_4 ; A_5 ; A_6 , cuyo conjunto llamaremos Δ^1 . Repitiendo la operación respecto de cada uno de los triángulos formados se obtiene un nuevo conjunto de triángulos $\pi^{(2)}$, constituído por treinta y seis triángulos P_{11} P_{12} P_{13} P_{66} , y otro Δ^2 de puntos, formado asimismo por 36 puntos A_{11} A_{12} A_{13} A_{61} A_{62} A_{63} A_{64} A_{65} A_{66} .
- 2. Este procedimiento se extiende sin dificultad a los poliedros elementales de cualquier número de dimensiones, previa generalización del concepto de polo respecto de un poliedro. A este efecto:

Sea P_n un poliedro elemental de n dimensiones y E_{n-1} un hiperplano cualquiera. Este corta a las n+1 caras de P en otros tantos E_{n-2} . Si se determina el polo de cada uno de éstos, respecto de la correspondiente cara de P y se une cada polo con el vértice opuesto a la cara a que pertenece, las rectas obtenidas concurren en un punto llamado polo de E_{n-1} respecto de P_n . Bastará probar, en efecto, que dos cualesquiera de estas rectas son coplanarias. Sean A y B dos vértices de P_n y A' y B' los polos contenidos en sus caras opuestas a_{n-1} y b_{n-1} . La recta AB determina con el punto A' un E_n que corta al E_{n-2} , determinado por los restantes vértices de P_n (distinto del A y del B), precisamente en el mismo punto en que corta a dicho E_{n-2} , el plano ABB'. Las rectas BB' y AA' concurren pues, y esto basta para afirmar la concurrencia de todas las demás.

3. Sea P_n un poliedro elemental de n dimensiones y E_{n-1} un hiperplano de exclusión del mismo. Determinemos el polo A de E_{n-1} respecto de P. Los hiperplanos definidos por A, con cada una de las aristas de P, dividen a P en n+1! poliedros elementales, P_1 ; P_2 ; $P_{n+1!}$, cuyo conjunto designaremos por $\pi^{(1)}$. Respecto de cada uno de éstos, hallemos el polo de E_{n-1} : obtendremos n+1! puntos $A_1 A_2 \ldots A_{n+1!}$, conjunto que designaremos por $\Delta^{(1)}$. Si repetimos estas mismas operaciones, se obtiene un nuevo conjunto $\pi^{(2)}$ constituído por $(n+1!)^2$

poliedros P_{11} P_{12} P_{13} $P_{n+1!n+1!}$, y otro $\Delta^{(2)}$, formado por $(n+1!)^2$ puntos A_{11} A_{12} A_{13} $A_{n+1!n+1!}$, etc., etc.

La sucesión $\pi \equiv \pi^{(1)}; \pi^{(2)}; \pi^{(3)}...$ la llamaremos «red de poliedros elementales en P»; cada uno de los conjuntos de poliedros $\pi^{(1)}, \pi^{(2)}, \pi^{(3)}...$ etcétera, «mosaico elemental en P»; la sucesión $\delta \equiv \Delta^{(1)}, \Delta^{(2)}, \Delta^{(3)}...$ «red elemental de puntos en P» y, en fin, cada uno de los conjuntos $\Delta^{(1)}, \Delta^{(2)}, \Delta^{(3)}$ que la forman, «red parcial de puntos δ ».

4. Si determinamos los diversos E_{n-2} de intersección de E_{n-1} considerado al comienzo, con cada uno de los hiperplanos en que se hallan contenidas las caras de P_n , los polos de los tales E_{n-2} respecto de cada una de estas caras, son n+1 puntos, los cuales a su vez, unidos de n en n, definen otros tantos E'_{n-1} . Cada cara $C^{(h)}$ de P_n , es cortada por todos los E'_{n-1} , excepto uno, al que llamaremos hiperplano de exclusión de C_h , y lo designaremos por $E'^{(h)}_{n-1}$. Los hiperplanos continentes de las caras de P_n determinan n+1 poliedros elementales, cada uno de los cuales $P^{(h)}_n$, tiene una cara $C^{(h)}$ común con el P. En resumen, disponemos de un conjunto de h+1 poliedros elementales, que «llenan» el espacio proyectivo, y un sistema de h+1 planos de exclusión, respectivamente relacionado con cada uno de aquellos poliedros.

Pueden, pues, determinarse n+2 redes de poliedros elementales y otras tantas redes elementales de puntos con sus correspondientes mosaicos y redes parciales. Designaremos por $\Sigma^{(K)}$ el conjunto de los n+2 mosaicos $\pi^{(K)}$, conjunto que se hallará constituído, naturalmente, por (n+2) (n+1!)^K poliedros elementales. Asimismo designaremos por $\Omega(K)$ al conjunto de los puntos pertenecientes a las h+1 redes parciales, constituídas por (n+2) (n+1)^K puntos.

La sucesión

$$\varphi \equiv \Sigma^{(1)}; \Sigma^{(2)}; \Sigma^{(3)}.....$$

será una «red de poliedros elementales en el espacio $E_{\rm n}$ ».

Y la

$$\phi \equiv \Omega^1; \Omega^2; \Omega^3.....$$

una «red elemental de puntos en el espacio E_n ».

5. El teorema de la continuidad en el espacio proyectivo B_n puede enunciarse diciendo que cualquier sucesión

de poliedros elementales de una red, tiene un punto y sólo uno de intersección (Durchsnitt).

Dados dos puntos M y N pertenecientes a un poliedro elemental φ , puede determinarse un valor v tal, que para n>v, los puntos M y N pertenecen a distintos poliedros elementales de los mosaicos $\pi^{(n)}$ de una red definida en P.

Supuesto un poliedro elemental P, y un punto del mismo M, si se define en P una red de poliedros, a las fronteras de los cuales no pertenezca M, existe una sucesión y sólo una de números

tal, que M esté en todos los poliedros

de la expresada red.

Dado un poliedro elemental P, en el que se halla definida una red, y otro poliedro elemental P contenido en P, existe en la citada red un poliedro $A_{ijhkl...}$ contenido en P.

6. Todo conjunto de infinitos puntos de un espacio proyectivo B_n tiene al menos un punto de acumulación (Teorema de Bolzano generalizado).

Consideremos una red de poliedros elementales en E_n , $\pi^{(1)}\pi^{(2)}\pi^{(3)}$ $\pi^{(m)}$ En algunos de los poliedros que forman $\pi^{(1)}$ habrá infinitos puntos del conjunto considerado; por ejemplo en el P_i . En algunos de los P_{ix} (x=1,2,3.... n!) que forman parte de $\pi^{(2)}$ habrá uno, al menos, P_{ij} que contenga infinitos puntos de conjunto, etc. Queda así definida una sucesión P_i P_{ij} etc., cuyo punto común es de acumulación del conjunto.

7. Una sucesión infinita α_1 α_2 α_3 de conjuntos completos no vacíos y tales, que $\alpha_{i+1} < \alpha_i$ tiene al menos, un punto de intersección. (Teorema de Cantor generalizado).

En efecto, elijamos un punto B_1 en α_1 ; otro B_2 en α_2 ; y en general, un B_m en α_m Queda así definida una sucesión, que tendrá un punto de acumulación. Dicha sucesión está contenida en cualquier α_i a partir de uno de sus elementos v (función de i). Luego su punto de acumulación es común a todos los α_m .

8. Sea M un conjunto completo de E_n , a cada uno de cuyos puntos le hacemos corresponder un poliedro elemental incompleto que lo contenga. El conjunto M está siempre contenido en un número finito de tales poliedros correspondientes. (Teorema de Heine-Borel-Lebesgue, generalizado).

Supongamos falso el teorema y definamos una red de poliedros elementales y completos en el espacio E_n . $E^{(1)}$ habrá, al menos un poliedro P_{ij} , que satisfaga a la misma condición. Así sucesivamente queda definido un punto A común a la sucesión P_i P_{ij} P_{ijk} etc... Dicho punto A pertenece a M y se comprende, por tanto, un poliedro elemental incompleto P que lo contiene. Pero en la expresada sucesión hay un $P_{ijk\ldots e}$ a partir del cual todos los restantes poliedros están contenidos en P, y por tanto, en el interior de los mismos se cumple el enunciado contra lo supuesto.