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Variational PINNs for solving parametric PDEs
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Abstract:
Solving inverse problems with uncertainty quantification is crucial for our
society. Herein, we focus on inverse problems governed by second-order
linear Partial Differential Equations (PDEs).

The most critical step for decoding inverse problems is to solve the as-
sociated parametric PDE. This step is often a bottleneck when employing
classical finite element or finite difference-based methods; however, Neural
Networks (NNs) show a promising avenue for solving parametric PDEs.

In this presentation, we use Robust Variational Physics Informed Neural
Networks (RVPINNs) [2]. We propose to decompose the parametric PDE
solution using a Proper Generalized Decomposition (PGD) [1] of the form:

u(x; ξ) ≈
N∑
i=1

ci(ξ) · ui(x), (1)

where {ui(x)}Ni=1 is a set of functions depending on the spatial variable x ∈
Rd (d is the space dimension), and {ci(ξ)}Ni=1 is a set of coefficients depending
on the PDE parameter ξ. The key idea is to employ a NN u : Rd −→ RN

to construct the basis functions ui(x) while computing the coefficients ci(ξ)
using a Least-Squares solver. The output u plays the role of a set of reduced
order basis, as in PGD.

Critical numerical aspects that need to be properly adjusted to ensure the
proper behavior of the method include: (a) numerical integration, possibly
using a high-order, stochastic, and unbiased rule; (b) a proper architecture
choice possibly adapted to the regularity of the solution; and (c) an efficient
implementation for the construction of the Least Squares system. We will
discuss all these aspects during the presentation.
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We will also illustrate the main features and limitations of the method via
one- and two-dimensional numerical experiments using a specific RVPINN
method known as Deep Fourier Residual [3].
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