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New Method to Calculate Mode Conversion
Coefficients in SI Multimode Optical Fibers

J. Zubia, G. Durana, G. Aldabaldetreku, J. Arrue, M. A. Losada, and M. Lopez-Higuera

Abstract—A simple method is proposed for the experimental
calculation of the mode conversion coefficients in multimode
optical fibers. It only requires observing the far-field output
pattern from a fixed length of fiber as the launching angle
changes, as well as the intersection point between two far-field
output patterns corresponding to two different input angles. The
results obtained with this method are quite insensitive to small
variations of the experimental parameters. A good agreement
between theoretical and experimental results is also found.

Index Terms—Mode conversion coefficients, mode coupling,
multimode optical fiber, plastic optical fiber (POF).

I. INTRODUCTION

ALTHOUGH single-mode fibers offer better transmission
properties since their bandwidth is superior, multimode

fibers have several advantages; for example, they impose less
stringent constraints on the light source (even luminescent
diodes are suitable for transmission through a multimode
fiber), and their large dimensions compared with those of
single-mode fibers relax the tolerances required for connection
and splicing. As a consequence, most of the devices, com-
ponents and tools (lasers, detectors, connectors, etc.) used in
multimode-based systems are substantially cheaper than those
used in single-mode systems, which reduces the overall cost
of the system, especially in access networks and local area
networks (LANs).

System cost is not only sometimes the primary factor when
designing a fiber-based system, but it also establishes the bit
rate through the optical fiber. As a matter of fact, the demand
for low-cost high-bandwidth communications in short and
medium distances from different sectors of society is contin-
uously increasing. Optical fibers made of polymer [plastic
optical fibers (POFs)] have become increasingly popular due
to their growing utility [1], [2]. Recently, they have found an
application as a high-bandwidth communication medium for
short distances, thanks to successive improvements in their
physical properties [3]–[5].

Optical fiber bandwidth, which limits the data transmission
speed [6], is greatly influenced by differential mode attenuation
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[7] as well as by mode-coupling effects [8]. The strong mode
coupling observed in step-index optical fibers (SI-OF) reduces
modal dispersion, and leads to a square-root dependence of the
bandwidth on the fiber length instead of the expected linear de-
pendence if mode coupling did not occur [9]. Because of the in-
fluence that mode coupling has on fiber bandwidth and on other
related properties of optical fibers, it becomes necessary to have
methods to obtain the rate of mode coupling in optical fibers
[10].

To give a qualitative account of the mode coupling rate, that
is, of the power transfer occurring between modes, the coupling
coefficient is considered [11]–[14]. This coefficient measures,
in real optical fibers, the mode-coupling rate owing to fiber im-
purities and inhomogeneities introduced during their manufac-
turing process, or to external factors such as external bends.

The method proposed by Gambling et al. has been consid-
ered by many authors [15] to calculate the mode conversion
coefficient from Gloge’s coupled-power flow equation [16],
[17]. The method is quite simple, but it involves observing the
far-field output pattern for various fiber lengths at different
launching angles, which must be accurately measured [10].

The present paper offers an alternative method to that pro-
posed by Gambling et al. We show that the mode conversion
coefficient can be obtained from the observation of the
far-field output pattern over a fixed length of optical fiber
as the angle of incidence of a narrow laser beam changes.
The results of the proposed method have been tested with
MegaEska POFs,1 although the method is suitable for any
kind of SI multimode optical fiber.

The structure of the paper is as follows. First, a theoretical
background is presented, which is necessary to understand the
basis of the method, which is explained afterwards. Then, the
experimental setup is explicated, to follow with the application
of the method to multimode plastic optical fibers. The results
obtained for these optical fibers are discussed. Finally, we finish
by giving the main conclusions derived from the method.

II. THEORY

Our starting point is Gloge’s coupled-power flow equation,
assuming that, in a multimode optical fiber, mode coupling oc-
curs primarily between the nearest neighboring modes. We have

(1)

1From Mitsubishi Rayon Co. Ltd. [Online] Available: http://www.mrc.co.jp/
english/.
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where
power distribution in the fiber;
mode conversion coefficient;
second order multiplicative factor in the series ex-
pansion of the power loss coefficient;

.
A solution for the differential equation can be found by using
the variable separation technique. The result is the following:

(2)

where , are Laguerre polynomials,
is defined as , and the expansion co-
efficient is determined from the input conditions. Now we
consider the special case of a plane wave launched at an angle

with the fiber axis ( ). For this power dis-
tribution, is the Dirac delta function . This
launching condition, combined with the orthogonal relations for
the Laguerre polynomials, enables us to obtain a convenient ex-
pression for the output power distribution [10]

(3)

where and is the modified Bessel function of
order zero.

In order to illustrate the basis of the method, we consider
a fixed fiber length . At the fiber input, we launch a plane
wave making an angle with the fiber axis. The output power
distribution is depicted in Fig. 1. Now we consider the same
input plane wave, but at a different launching angle . The
new output power distribution is also depicted in Fig. 1. As can
be seen from the figure, both curves intersect at the output angle

. This condition is set in the following equality:

(4)

or, equivalently

(5)

If we define the new variables and
, (5) can be rewritten as

(6)

Fig. 1. Output angular power distributions for a fixed length of fiber � � � m
and two launching angles � � ���� and � � ���� , derived from Gloge’s
coupled-power flow equation.

Considering that , , , and are experimentally mea-
surable quantities, there are only two unknowns: and . Thus,
we need another equation to be able to find the values of the
variables and . For this purpose, we notice that the transi-
tion occurring at the output angular power distribution from a
ring-shaped pattern into a disk-shaped pattern takes place at an
angle obtained from the following condition [10]:

at (7)

This criterion applied to the power distribution given by (3)
leads to

(8)

or

(9)

If we now substitute this expression for in (6), we obtain

(10)

We finally define the dimensionless quantities
, , and

, and the variable . Then,
(10) yields

(11)

where , , , and are experimentally obtainable quanti-
ties. Thus, if we calculate numerically from the above equa-
tion, we can obtain and by using the following relations:

(12)
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Fig. 2. Experimental setup for the determination of the transition angle
� and the angle � corresponding to the intersection point between two
output angular power distributions. BS—beam splitter. R.PD—reference
photodetector. S.PD—signal photodetector. RS—rotating stage. LD—laser
driver. R.M—reference multimeter. S.M—signal multimeter. C—computer.

It should be noted that this method does not make use of any
approximation, and not even to determine and : they can
be calculated from their definition. However, if we assume that

, we can expand in a Taylor series, and
write as follows:

(13)

This Taylor series expansion proves justified once we obtain
the results.

From and , the coefficients and are calculated by
means of the following expressions:

(14)

The exposed method completely determines and if we
measure the transition angle between two output angular
power distributions corresponding to the launching angles
and .

III. EXPERIMENT

Fig. 2 shows the experimental setup employed to calculate
the parameters required by the method.

A 543-nm-wavelength He–Ne laser is used to launch the
plane waves. The laser beam crosses a beam splitter in order
to obtain a reference signal and cancel the laser light intensity
fluctuations. One of the two light beams impinges on the
fiber input face at an angle . The light that exits the POF
is collected by an automatic rotating silicon photodetector
whose active area is mm , moving in the range of angles

, and placed approximately 3.1 cm away from
the POF output.

The fiber input end stands on a rotatory stage in order
to control the incidence angle. Two multimeters, attached to
the reference and signal detectors, send their measurements
to a computer, which stores all the data in a file for further
processing. The process described here is fully automated.

IV. RESULTS AND DISCUSSION

We have applied this method to a sample of Eska Premier
plastic optical fiber of length m (Mitsubishi Rayon;

Fig. 3. Experimental output angular power distributions for the launching
angles � � ��� and � � ��� . The transition from a ring-shaped pattern to
a disk-shaped pattern occurs at � � ��� .

Fig. 4. Comparison between the output power distributions obtained from
Gloge’s model (continuous lines) and the experimental ones (square and
triangular data points). The output power distributions correspond to the input
angles � � �� and � � ���� .

mm, , ), although the
method can be applied to any fiber length. We prefer to use
fiber lengths that can be maintained straight in the experimental
setup to avoid the introduction of additional mode coupling
as a consequence of winding the fibers around reels. Using
the experimental setup described above, several measurements
were carried out at different input angles to determine both
the transition angle and the angle corresponding
to the intersection point between two output angular power
distributions.

For the considered POF and fiber length, the transition in the
output angular power distribution from a ring-shaped pattern to
a disk-shaped pattern happens approximately at an input angle
of (Fig. 3). For input angles just above the transition
angle, the output power distribution is a double-peaked curve,
as can be seen in Fig. 3 for an input angle of .

Fig. 4 represents the output power distributions for the input
angles (square data points) and (trian-
gular data points), although the choice of the input angles is ar-
bitrary. The intersection point between both curves, which have
been read out directly from the data, occurs approximately at an
output angle of .

From this experimental data, we calculate , , and
( , , , ) and, after
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Fig. 5. Graphical representation of the Fresnel scalar transmission coefficient
at the air-core interface as a function of the incidence angle. Small changes in
the coefficient are observed in the range from � � �� �� � �������
to � � 	��� �� � ����	��.

having solved (11) numerically, we find the following solution
for the coefficients and (wavelength of light 543 nm):

rad/m rad m (15)

In the calculations, we have neglected the dependence of the
Fresnel transmission coefficient on the incidence angle at the
input face of the fiber. Thus, we have not considered a possible
correction factor for the input power distribution within the fiber
core which, for each incidence angle, accounts for the Fresnel
reflection occurring on the fiber input face. This small neglect is
justified from Fig. 5, which shows the dependence of the Fresnel
transmission coefficient on the incidence angle when
no polarization dependence exists (scalar approximation). For
the input angle of , the Fresnel coefficient is 0.9567, whereas
for the input angle of , it is 0.9529. Thus, both coefficients
are approximately the same, and therefore the power that pene-
trates into the fiber core is the same as well; this fact holds true
provided that the area covered by the laser beam is smaller than
that of the fiber core for both input angles.

If the laser beam completely covers the fiber core, then the
power coupled into the fiber depends on the launching angle.
To take it into account, we have to consider a correction factor.
For this purpose, let be the power that penetrates into the
fiber core when the input angle is and be the input power
within the fiber core when the input angle is . We now define
the dimensionless quantity . Then (4) turns out to
be

(16)

Note that if the power coupled into the fiber core does not
change for two different launching angles, then and

, so we recover (11). is equal to pro-
vided that the incident beam is an infinite uniform plane wave.
However, the mode of our laser beam has a Gaussian
power distribution, so the relation between and is not
so simple. Thus, in order to numerically solve (16), we need
to determine experimentally. This can be done by taking
two fixed launching angles and in our
case) into a short length of optical fiber, and by measuring the

output power in both cases. In our measurements, turned
out to be 1.15 . These two measurements
were also made over the fiber under test ( m), and the
same result was obtained for .

However, small deviations between the input angle and
the real one may happen, mainly because the input fiber surface
does not remain perpendicular to the fiber axis. And in the same
manner, the values of the parameters , , and consid-
ered may also deviate from their real values. In such a case, it
would be interesting to study the stability of the coefficients
and when small deviations of the parameters , , ,

, and are considered around the values used to calculate
the solution given by (15). In doing so, we take one of the pa-
rameters as a variable, maintaining the rest fixed.

Each data set in Figs. 6 and 7 show the behavior of and
, respectively, for small changes of one of the parameters. The

representation of each data set is made at those points where (16)
has a physical solution, namely at those points where .
This is the reason for having different plotting ranges from one
data set to another. In the case of the coefficient , we can ob-
serve its linear dependence with the relative shift
of the parameters but, from the figure, the lack of stability of
the coefficient is evident. If we now consider the behavior of the
mode conversion coefficient for small shifts of the parameters

, , , and , the dependence is also approximately
linear, but in this case, the slopes of the straight lines fitting the
data sets are quite small. Thus, in the case of the mode conver-
sion coefficient , we can conclude that the parameter is stable.
This behavior of the coefficients and is derived from error
calculus. For this purpose, let us consider the expressions of
and as a function of the parameters and

(17)

The parameter , which has been calculated numerically, de-
pends on , , , , and . The error associated with
and can be calculated according to the following expressions:

(18)

where is the error associated with the measurement of
the transition angle, and the error associated with can be
calculated by means of the following formula:

(19)

where is the error associated with the parameter
; ; ; ; . Note that

, that is, the error committed when mea-
suring the input angle is independent of the input angle. The
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Fig. 6. � as a function of the relative shift �� � ����� of the associated
parameter � around the value used to calculate the solution given by (15). :
� � � ;�: � � � ; : � � � ; : � � � .

Fig. 7. � as a function of the relative shift �� � ����� of the associated
parameter � around the value used to calculate the solution given by (15). :
� � � ;�: � � � ; : � � � ; : � � � .

partial derivatives in (19) are estimated from the numerical so-
lution of (16). By considering that the error committed when
measuring the input angle and the transition angle is of and
that the error of the rest of parameters is on the order of five per
cent , , then the error estimations
and are found to be

rad m

rad/m (20)

which give account of the relatively constant value of and the
instability of the coefficient .

Once we have determined and from (14), we can build
the theoretical output power distribution corresponding to the
input angle by using (3), and graphically compare this result
with that obtained experimentally. Fig. 4 shows the theoretical
curves compared with the experimental ones for the input angles
of and . The agreement is
quite good, especially in the region of the peaks, as can be seen
from the figure.

The main advantage of the method, in contrast to that pro-
posed by Gambling et al., is that the experimental measurements

can be made over any length of fiber, while they do not need
a high accuracy in the parameters involved. In fact, both long
fiber lengths and the polishing conditions of the end faces have
a negative influence on the results derived from the method by
Gambling et al.: long fibers in the laboratory are wound around
reels, and this may introduce additional mode coupling due to
the bending of the fiber. In addition to this, the experimental con-
ditions, and, especially, the polishing conditions are variable,
since successive shorter lengths of the same fiber are required
in order to determine the dependence of the transition angle
on length [10]. As a consequence, in the method by Gambling et
al., identical conditions are not obtained, and this may result in
accumulative errors, especially those derived from the polishing
conditions. Instead, those problems are not encountered in the
method proposed in this paper, since the fiber does not need to
be cut repeatedly, no matter its length, so the experimental con-
ditions remain the same in the whole experiment.

Our method does not make use of any approximation. It only
assumes, as the starting point, Gloge’s coupled-power flow
equation and all the assumptions involved in it. The method
enables the determination of both and , although the coeffi-
cient is quite sensitive to small variations in the experimental
parameters, such as the input angle or the transition angle

; thus, as happens with the method by Gambling et al.,
our method is not appropriate for determining unless very
exact experimental measurements are carried out. However, as
explained before, the mode conversion coefficient is quite
insensitive to these small variations.

V. CONCLUSION

A simple method is proposed for the determination of the
mode conversion coefficients for SI multimode optical fibers at
the desired light wavelength, as an alternative to that proposed
by Gambling et al.. It requires both measuring the far-field
output pattern at the transition angle over a short fiber sample,
and two additional far-field output patterns corresponding to two
different launching angles, in order to determine the intersection
point between them. The method assures the stability of the
mode conversion coefficient to small variations of the
experimental parameters around their real values. The method
has been successfully tested on multimode POFs (Eska Premier
fiber from Mitsubishi Co.). The results obtained from the
method in this particular case and for nm are

rad /m and an estimated error of rad /m.
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