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Abstract: The aim of the present paper is to provide a single analytical
expression of the power transmission coefficient for leaky rays in multi-step
index (MSI) fibres. This expression is valid for all tunnelling and refracting
rays and allows us to evaluate numerically the power attenuation along an
MSI fibre of an arbitrary number of layers. We validate our analysis by
comparing the results obtained for limit cases of MSI fibres with those
corresponding to step-index (SI) and graded-index (GI) fibres. We also
make a similar comparison between this theoretical expression and the use
of the WKB solutions of the scalar wave equation.
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1. Introduction

Multimode optical waveguides of circular cross-section, such as multi-step index (MSI) fibres,
can propagate leaky rays in addition to bound rays, when they are illuminated by sources which
emit light over a wide range of directions, as is the case of light emitting diodes (LEDs) [1–5].
These leaky rays are responsible for the loss of power by radiation and, therefore, they have a
great significance in the description of light propagation within a multimode optical fibre.

After a sufficiently long fibre distance from the source, practically all leaky ray power has
radiated away, whereas bound rays convey nearly all of the remaining power within the fibre.
Once we reach this steady state, light propagation can be entirely described by bound rays alone.
Nevertheless, in the intermediate region both bound and leaky rays are necessary to provide an
accurate description of light propagation, since the latter can contribute significantly to the total
light power.

It is important to keep in mind that this intermediate region or transient state can extend as
far as several kilometres. For this reason, and also taking into account that the usual range of
MSI polymer optical fibres (MSI-POFs) rarely goes beyond 100 metres [2], in nearly all cases
it is crucial that we assess accurately the power radiated by leaky rays, since they could modify
the transmission properties of these fibres. These modifications could, in turn, have an effect on
the bandwidth or on some other parameters that determine the fibre performance.

Leaky rays can be classified into two subclasses as well: refracting and tunnelling rays [6].
Tunnelling rays undergo a very slow leakage compared to refracting rays and, therefore, they
play a major role in the determination of the power attenuation along a fibre [7]. Neverthe-
less, the evaluation of the power attenuation by an electromagnetic-mode analysis presents a
boundary-value problem that is virtually intractable for geometries involving more than two
layers [7], which is the usual case in MSI fibres.

We can overcome such a problem if we linearize the square of the core refractive index in
the profile of the MSI fibre [8]. Then, we can make use of a single analytical expression based
on the method of uniform approximation and valid for all leaky rays. Such an expression has
been previously derived in Ref. [9] for step-index (SI) and graded-index (GI) fibres, although it
must be stressed that there are many typographical errors that invalidate its use, unless they are
corrected. It is our purpose to recalculate this expression and make it suitable for MSI fibres.
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Once recalculated, its implementation in computational models that use the ray-tracing method
will allow obtaining much more accurate and realistic simulation results.

The structure of the paper is as follows. We begin in section 2 with a brief review of the clas-
sification of rays into bound, tunnelling and refracting rays and explain the physical mechanism
that gives rise to the existence of tunnelling rays. Then, we give the mathematical derivation
of the power transmission coefficient for MSI fibres by using the method of uniform approxi-
mation. We also provide the suitable expressions based on the WKB solutions and restrict their
applicability to regions away from the boundary between tunnelling and refracting rays. After-
wards, we carry out several calculations for different types of MSI fibres and discuss the results
obtained. Finally, we summarize the main conclusions.

2. Theoretical analysis

2.1. Classification of rays in MSI fibres

The most significant characteristic of MSI fibres that differentiates them from their SI or GI
counterparts is their multilayered core. The most general refractive index profile in MSI fibres
can be expressed as

n(r) =




n1; r < ρ1,
n2; ρ1 � r < ρ2,

...
nN ; ρN−1 � r < ρN ,
ncl; r � ρN ,

(1)

where we assume, for the sake of simplicity, that the cladding extends to infinity.
A convenient way to classify rays in MSI fibres is to make use of the ray path equation g(r)

to determine the range of values of the radial coordinate r for which rays can propagate. It is
defined as [3]

g(r) = n2 (r)− β̃2 − l̃2ρ2
N

r2 , (2)

where the ray invariants β̃ and l̃ define the ray path

β̃ = ni cosθzi ;

l̃ =
ρi

ρN
ni sinθzi cosθφi ;

i = 1 . . .N, (3)

θzi being the angle between the ray path and the longitudinal axis and θφi the angle between the
ray path projection onto the fibre cross-section and the azimuthal direction, both measured at a
certain ith layer.

Ray paths can exist only if the right-side of Eq. (2) is non-negative, corresponding to an
oscillating field, whereas we have an evanescent field if the right-side of Eq. (2) is negative [4,
10–12]. To be trapped within an MSI fibre of outermost radius ρN , a ray must have g(r)|r=ρ+

N
<

0, i.e.
n2

cl − β̃2 − l̃2 < 0. (4)

Taking this into account, we can classify rays as follows:

• Bound rays: These rays are bound to the fibre core and do not leak into the cladding.
g(r) < 0 ∀r > ρN .

Bound rays

{
ncl � β̃ � n1,

0 � l̃ � l̃max

(
β̃
)

.
(5)

(C) 2006 OSA 20 February 2006 / Vol. 14,  No. 4 / OPTICS EXPRESS  1415
#10272 - $15.00 USD Received 11 January 2006; revised 6 February 2006; accepted 13 February 2006



• Tunnelling rays: These rays satisfy the two conditions β̃2 < n2
cl and β̃2 + l̃2 � n2

cl.

Tunnelling rays




0 � β̃ < ncl,(
n2

cl − β̃2
)1/2

� l̃ � l̃max

(
β̃
)

.
(6)

• Refracting rays: These rays reach the core-cladding interface. g(r)|r=ρ+
N

> 0, that is,

0 � β̃2 + l̃2 < n2
cl.

In the statements above, l̃max

(
β̃
)

is the maximum value of l̃ along the curve g(r) = 0, i.e.

l̃2
max

(
β̃
)

=
(

n2
x − β̃2

) ρ2
x

ρ2
N

, (7)

x being an integer value satisfying

x = min{all possible values of i} so that β̃ � β̃min; i = 1 . . .N,

and

β̃2
min =




max

{
0,

ρ2
j+1n2

j+1 −ρ2
i n2

i

ρ2
j+1 −ρ2

i

}
;

{
i = 1 . . .N −1,
j = i . . .N −1,

0; i = N.

(8)

2.2. Tunnelling rays in MSI fibres

Rays that are tunnelling are neither bound nor refracting and satisfy the conditions shown above.
These rays disappear in the core at the turning points and reappear in the cladding at a finite
distance from the core-cladding interface. For these rays to be able to propagate in the cladding,
it is necessary to have a positive g(r) for all values of r beyond a certain radius rrad given by
the condition g(r)|r=rrad

= 0. Hence

rrad =
l̃ρN(

n2
cl − β̃2

)1/2
. (9)

At each turning point, part of the ray power is lost to the cladding by means of a tunnelling
mechanism, analogous to the frustrated total internal reflection [13–17], caused in this instance
by the curvature of the core-cladding interface [6]. The ray theory does not serve to understand
the origin of the physical mechanism that produces this type of radiation [18]. Its explanation
has to be looked for by using Maxwell’s equations and, more specifically, the modal solution
of the wave equation [5, 19].

Nevertheless, we can still retain the ray paths of geometric optics and incorporate this wave
effect by conveniently defining a power transmission coefficient T and assuming that power
loss occurs only at turning points along the ray path [4]. Furthermore, such an approach has the
additional advantage of allowing us to extend its applicability to the analysis of refracting rays.
Therefore, we define T as the fraction of incident power transmitted to the cladding

T = 1− power of the reflected ray
power of the incident ray

. (10)

From a knowledge of the power transmission coefficient, we can define the power attenuation
coefficient γ of a ray as [7, 20]

γ = T/zp, (11)
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where zp, or ray half-period, is the axial distance between successive turning points at which
power is lost [3]. Assuming that γ is constant, the ray power P(z) at a distance z along the fibre
attenuates according to

P(z) = P(0)exp(−γz) . (12)

2.3. Mathematical derivation of the power transmission coefficient

The derivation of the power transmission coefficient relies on the linearization of the square
of the core refractive index of the MSI fibre at the top of the jump at r = ρN , as shown in
Fig. 1 [7, 8]. We obtain

n2 (r) =

{
δ (r−ρN)+n2

N ; r � ρN ,

n2
cl; r � ρN ,

(13)

where nN is the refractive index and ρN is the outer radius of the Nth layer (i.e. the outermost
one).

Fig. 1. The linearized profile used in the analysis corresponds to AB (red line). At rtp the
ray is partially reflected and the position rrad in the cladding stands for the point where the
transmitted ray reappears.

The value of δ is the slope of the core profile at r = ρ−
N

δ =
dn2 (r)

dr

∣∣∣∣
r=ρ−

N

=
n2

N −n2
N−1

ρN −ρN−1
, (14)

and always δ < 0 whenever the refractive index profile decreases with r.
Provided that the change in the refractive index profile over this region is small, i.e. that

we are considering weakly guiding fibres, the results obtained are independent of polariza-
tion [20]. By assuming that kρN � 1, so that the fields exhibit local-plane-wave, or ray, charac-
teristics [21, 22], we can work with the solutions of the scalar wave equation. (k = 2π/λ is the
wavenumber and λ the wavelength in vacuum.)

The linearization of n2 (r) in Eq. (13) allows us to calculate these solutions by following the
same procedure as for GI fibres, which was accurately described in Ref. [9]. Nevertheless, it
is worthy of remark that there are many typographical errors in this reference which are very
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difficult to track down. Furthermore, in many cases they cannot be easily corrected, unless the
stated problem is solved from the beginning. Consequently, and for the sake of completeness,
we have decided to include the detailed mathematical derivation, indicating the exact location
of such mistakes and providing the correct expressions, where appropriate.

Using the ray invariants defined in subsection 2.1, the solutions of the scalar wave equa-

tion in cylindrical coordinates (r,φ,z) are of the form Ψ(r)exp
[
ık
(

β̃z+ρNl̃φ
)]

, where Ψ(r)
satisfies [8]

d2Ψ
dr2 +

1
r

dΨ
dr

+ k2
r (r)Ψ = 0, (15)

and kr (r) is the radial component of the local plane wave vector

kr (r) = k

[
n2 (r)− β̃2 − l̃2ρ2

N

r2

]1/2

. (16)

Using the transformation Ψ(r) = Φ(r)/
√

r, Eq. (15) reduces to

d2Φ
dr2 + k2

[
n2 (r)− β̃2 −

(
l̃2 − 1

4k2ρ2
N

)
ρ2

N

r2

]
Φ = 0, (17)

and the term 1/
(
4k2ρ2

N

)
can be safely neglected compared with l̃2. Therefore,

d2Φ
dr2 + k2

r (r)Φ = 0. (18)

After a change of variables this leads to the Airy equation [23]

d2Φ
dξ 2 − ξ Φ = 0, (19)

whose solutions are in terms of the Airy functions [9]

Φ = C

[−ξ (r)
k2

r (r)

]1/4

[Ai(ξ (r))± ıBi(ξ (r))] , (20)

where C is a constant and

ξ (r) =



−
[

3
2

∫ r
kr (r)dr

]2/3

; k2
r (r) > 0,

+
[

3
2

∫ r
|kr (r)|dr

]2/3

; k2
r (r) < 0.

(21)

(Please note that the absolute value of Eq. (23) of Ref. [9] was inappropriately placed.)
These solutions can be thought of as connecting expressions between the oscillatory be-

haviour when −ξ � 1 and the exponential behaviour when ξ � 1. Let us now separate Eq. (21)
into

ξ1 (r) =



−
[

3
2

∫ rtp

r
kr1 (r)dr

]2/3

; k2
r1

(r) > 0

+
[

3
2

∫ r

rtp

|kr1 (r)|dr

]2/3

; k2
r1

(r) < 0

if r � ρN , (22)

ξ2 (r) =



−
[

3
2

∫ r

rrad

kr2 (r)dr

]2/3

; k2
r2

(r) > 0

+
[

3
2

∫ rrad

r
|kr2 (r)|dr

]2/3

; k2
r2

(r) < 0

if r � ρN , (23)
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where

kr1 (r) =




k

[
n2 (r)− β̃2 − l̃2ρ2

N

r2

]1/2

; n2 (r) > β̃2 +
l̃2ρ2

N

r2

ık

[
β̃2 +

l̃2ρ2
N

r2 −n2 (r)
]1/2

; n2 (r) < β̃2 +
l̃2ρ2

N

r2

if r � ρN , (24)

kr2 (r) =




k

(
n2

cl − β̃2 − l̃2ρ2
N

r2

)1/2

; n2
cl > β̃2 +

l̃2ρ2
N

r2

ık

(
β̃2 +

l̃2ρ2
N

r2 −n2
cl

)1/2

; n2
cl < β̃2 +

l̃2ρ2
N

r2

if r � ρN . (25)

In the equations above rtp and rrad are the roots of kr1 (r) = 0 and kr2 (r) = 0, respectively [4].
In the latter case it is straightforward to show that rrad corresponds to Eq. (9), whereas in the
former case the equation to solve is

ar3 +br2 + c = 0,

where

a = δ,

b = −δρN +n2
N − β̃2,

c = −l̃2ρ2
N ,

and they always satisfy a < 0, b > 0 and c < 0 provided that β̃ < ncl and the refractive index
profile decreases with r. Under such conditions, and out of the three possible solutions, rtp

corresponds to

rtp = − 1
3a

[
b+

1

21/3

(
L+

√
3M
)]

, (26)

where

L =
(
F2 +G2)1/6

cos

[
1
3

arctan

(
G
F

)]
,

M =
(
F2 +G2)1/6

sin

[
1
3

arctan

(
G
F

)]
,

and

F = −2b3 −27a2c,

G = 3
√

3
(−4a2b3c−27a4c2)1/2

.

The asymptotic expansions of the Airy functions must represent the fields of [4]

(i) the incident ray approaching the turning point rtp and the reflected ray leaving rtp (both
for r � ρN), and

(ii) the transmitted ray leaving the radiation caustic rrad (for r � ρN).
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Thus, we set (compare the set of equations below with Eq. (24) of Ref. [9])

Φi (r) = A

[−ξ1 (r)
k2

r1
(r)

]1/4

[Ai(ξ1 (r))+ ıBi(ξ1 (r))] , (27)

Φr (r) = R

[−ξ1 (r)
k2

r1
(r)

]1/4

[Ai(ξ1 (r))− ıBi(ξ1 (r))] , (28)

Φt (r) = S

[−ξ2 (r)
k2

r2
(r)

]1/4

[Ai(ξ2 (r))− ıBi(ξ2 (r))] , (29)

where A, R and S are constants related to the amplitudes of the corresponding fields. These
amplitude coefficients are found by satisfying the boundary conditions at r = ρN , which are
equivalent to continuity of

Φi (r)
∣∣
r=ρN

+ Φr (r)|r=ρN
= Φt (r)

∣∣
r=ρN

, (30)

and

d
dr

[
Φi (r)+Φr (r)

]∣∣∣∣
r=ρN

=
dΦt (r)

dr

∣∣∣∣
r=ρN

. (31)

By solving the two equations for R and S in terms of A, we determine the power transmission
coefficient given by Eq. (10) as

T = 1−
∣∣∣∣RA
∣∣∣∣
2

, (32)

which leads to the result (see Eq. (3) of Ref. [9])

T =
4
π2

C2

X2 +Y 2 , (33)

where, following the nomenclature of Ref. [9], the correct expressions for the coefficients X
and Y are given by

X = −A′
1A2 +B′

1B2 +A1
(
C1A2 −C2A′

2

)−B1
(
C1B2 −C2B′

2

)
,

Y = A′
1B2 +B′

1A2 −B1
(
C1A2 −C2A′

2

)−A1
(
C1B2 −C2B′

2

)
,

where
A1 ≡ Ai(ξ1) , A2 ≡ Ai(ξ2) , B1 ≡ Bi(ξ1) , and B2 ≡ Bi(ξ2) ,

and prime denotes differentiation with respect to the arguments. Such a simplification is possi-
ble because the Wronskian of Airy functions dictates that W {Ai(ξ ) ,Bi(ξ )} = π−1, as stated
in Ref. [23]. For the profile given in Eq. (13), ξ1 ≡ ξ1 (ρN) of Eq. (22) is evaluated by perform-
ing a numerical integration of Eq. (24), whereas ξ2 ≡ ξ2 (ρN) of Eq. (23) is readily calculated.
Consequently

ξ1 =



−
[

3
2

∫ rtp

ρN

kr1 (r)dr

]2/3

; k2
r1

> 0,

+
[

3
2

∫ ρN

rtp

|kr1 (r)|dr

]2/3

; k2
r1

< 0,

(34)
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and

ξ2 =




−


3

2
kρN



(

n2
cl − β̃2 − l̃2

)1/2 − l̃ arccos


 l̃(

n2
cl − β̃2

)1/2








2/3

; k2
r2

> 0,

+


3

2
kρN


l̃ ln


 l̃ +

(
β̃2 + l̃2 −n2

cl

)1/2

(
n2

cl − β̃2
)1/2


−(β̃2 + l̃2 −n2

cl

)1/2






2/3

; k2
r2

< 0,

(35)

being k2
r1
≡ k2

r1
(ρN) and k2

r2
≡ k2

r2
(ρN) given by Eqs. (24) and (25), respectively. The coeffi-

cients C1 and C2, which also depend on another four coefficients M1, M2, L1 and L2, are shown
below (note that the last five coefficients given in Ref. [9] had to be corrected)

C1 = (L2 −L1)/M1, C2 = −M2/M1,

M1 = ξ ′
1 =

kr1

(−ξ1)
1/2

, M2 = ξ ′
2 =

−kr2

(−ξ2)
1/2

,

L1 =
1
4

(
ξ ′

1

ξ1
− 2k′r1

kr1

)
=

−kr1

4(−ξ1)
3/2

− k′r1

2kr1

, L2 =
1
4

(
ξ ′

2

ξ2
− 2k′r2

kr2

)
=

kr2

4(−ξ2)
3/2

− k′r2

2kr2

,

being ξ ′
1 ≡ [dξ1 (r)/dr]|r=ρN

, ξ ′
2 ≡ [dξ2 (r)/dr]|r=ρN

, where ξ1 (r) and ξ2 (r) are given by
Eqs. (22) and (23), respectively, and

k′r1
≡ dkr1 (r)

dr

∣∣∣∣
r=ρN

=




k

l̃2ρ2
N

r3 +
1
2

dn2 (r)
dr[

n2 (r)− β̃2 − l̃2ρ2
N

r2

]1/2

∣∣∣∣∣∣∣∣∣
r=ρN

= k
l̃2/ρN +δ/2(

n2
N − β̃2 − l̃2

)1/2
; k2

r1
> 0,

ık
− l̃2ρ2

N

r3 − 1
2

dn2 (r)
dr[

β̃2 +
l̃2ρ2

N

r2 −n2 (r)
]1/2

∣∣∣∣∣∣∣∣∣
r=ρN

= ık
−l̃2/ρN −δ/2(
β̃2 + l̃2 −n2

N

)1/2
; k2

r1
< 0,

(36)

k′r2
≡ dkr2 (r)

dr

∣∣∣∣
r=ρN

=




k

l̃2ρ2
N

r3(
n2

cl − β̃2 − l̃2ρ2
N

r2

)1/2

∣∣∣∣∣∣∣∣∣
r=ρN

= k
l̃2/ρN(

n2
cl − β̃2 − l̃2

)1/2
; k2

r2
> 0,

ık
− l̃2ρ2

N

r3(
β̃2 +

l̃2ρ2
N

r2 −n2
cl

)1/2

∣∣∣∣∣∣∣∣∣
r=ρN

= ık
−l̃2/ρN(

β̃2 + l̃2 −n2
cl

)1/2
; k2

r2
< 0.

(37)

For an MSI fibre of one layer the analytical continuation of kr1 (r) in Eq. (24) states that
rtp → ∞ and, therefore, we have that −ξ1 → ∞. Under such circumstances, Eq. (33) reduces to
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the power transmission coefficient of an SI fibre [9]

T =
4
π

K2

Z2 +Y 2 , (38)

where, fortunately, the expressions for the coefficients Z and Y were correctly given in Ref. [9]

Z = B2 +K1A2 −K2A′
2,

Y = A2 −K1B2 +K2B′
2,

even though the coefficient K2 was incorrectly typed. The correct expressions for K1 and K2 are

K1 = L2/kr1 , K2 = −M2/kr1 .

As stated in Ref. [9], the same result could have been obtained if we invoked continuity of
fields and their first derivative in Eqs. (30) and (31), after having replaced Φi and Φr of Eqs. (27)
and (28) by

Φi (r) = Aexp(ıkr1 r) , (39)

Φr (r) = Rexp(−ıkr1r) . (40)

Finally, it is important to bear in mind that the linearization of n2 (r) in Eq. (13) leads to a
different maximum value of l̃. It turns out to be that

l̃2
max

(
β̃
)

=
4

27δ2ρ2
N

[
−δρN −

(
β̃2 −n2

N

)]3
, (41)

which in some cases could be slightly lower than the value given by Eq. (7). In such a case, it is
possible to use the expression given by Eq. (43), which is derived from the WKB approximation
(see subsection 2.4 for further explanation). Since only weakly tunnelling rays are involved, the
WKB expression will introduce a negligible error into the calculation of the power attenuation
along the fibre.

2.4. WKB solutions of the scalar wave equation

It is possible to obtain separate expressions of the power transmission coefficient T for tun-
nelling and refracting rays within the local plane-wave approximation. These solutions, which
are frequently referred to as the Wentzel-Kramer-Brillouin (WKB) asymptotic solutions of the
scalar wave equation, lead to the simplest forms for T and also provide an excellent physi-
cal insight into the understanding of the phenomena involving both tunnelling and refracting
rays [4].

Even though the WKB solutions for optical fibres can be generalized to include discontinu-
ities in the refractive index profile [7], their applicability is only valid if rrad −rtp � O(λ ) [24].
In the limit where a tunnelling ray becomes a refracting one, i.e. if rrad → ρN , the power trans-
mission coefficient obtained using the WKB approximation is inappropriate, and the expression
derived by using the method of uniform approximation must be used instead (see Eq. (33) in
subsection 2.3). All in all the WKB results are still a good enough approximation for weakly
tunnelling rays, which have very small values of the power transmission coefficient [4].

For MSI fibres, the appropriate power transmission coefficient based on the WKB solutions
has the form [7]

T = ∏
i

∣∣T i
F

∣∣exp

[
−2
∫ rrad

rtp

|kr (r)|dr

]
, (42)
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where TF is the analytic continuation of the classical Fresnel transmission coefficient [25]. Each
of the factors

∣∣T i
F

∣∣ accounts for the ith discontinuity of the profile in the evanescent region and
represents the power attenuation of a tunnelling ray due to the fraction of power reflected back
towards the inside of the fibre. In the same way, the WKB integral in Eq. (42) represents the
power reflected back over the continuous part of the refractive index profile [7].

Let us now particularize Eq. (42) to an MSI fibre of N layers. If a tunnelling ray has its
outermost turning point at a certain layer x � N according to Eq. (2), i.e. if rtp = ρx, then

Ttunnel =
4k−rx

∣∣k+
rx

∣∣
k2
(
n2

x −n2
x+1

) N

∏
i=x+1

4
∣∣k−ri

∣∣ ∣∣k+
ri

∣∣∣∣k−ri

∣∣2 +
∣∣k+

ri

∣∣2 +2
∣∣k−ri

∣∣ ∣∣k+
ri

∣∣ exp(ζ1 + ζ2) , (43)

where

k−ri
= k

(
n2

i − β̃2 − l̃2ρ2
N

ρ2
i

)1/2

, (44)

k+
ri

= k

(
n2

i+1 − β̃2 − l̃2ρ2
N

ρ2
i

)1/2

, (nN+1 = ncl) (45)

and

ζ1 = −2kρN

N

∑
i=x+1







l̃ ln




l̃ρN

ρi−1
+

(
β̃2 +

l̃2ρ2
N

ρ2
i−1

−n2
i

)1/2

(
n2

i − β̃2
)1/2


−
[

l̃2 +
ρ2

i−1

ρ2
N

(
β̃2 −n2

i

)]1/2




−




l̃ ln




l̃ρN

ρi
+
(

β̃2 +
l̃2ρ2

N

ρ2
i

−n2
i

)1/2

(
n2

i − β̃2
)1/2


−
[

l̃2 +
ρ2

i

ρ2
N

(
β̃2 −n2

i

)]1/2





 ,

(46)

ζ2 = −2kρN


l̃ ln


 l̃ +

(
β̃2 + l̃2 −n2

cl

)1/2

(
n2

cl − β̃2
)1/2


−(β̃2 + l̃2 −n2

cl

)1/2


 . (47)

Each of the factors inside the product of Eq. (43) is always within the interval

0 �
4
∣∣k−ri

∣∣ ∣∣k+
ri

∣∣∣∣k−ri

∣∣2 +
∣∣k+

ri

∣∣2 +2
∣∣k−ri

∣∣ ∣∣k+
ri

∣∣ � 1,

whereas the first factor (outside and on the left side of the product) does not satisfy the condition
above. Instead, we have [22]

0 �
4k−rx

∣∣k+
rx

∣∣
k2
(
n2

x −n2
x+1

) � 2,

since
(
k−rx

)2
> 0 and

(
k+

rx

)2
< 0. It should be kept in mind that, in the boundary between tun-

nelling and refracting rays, this factor could be significant enough to lead to an overestimate
WKB value of the power transmission coefficient in Eq. (43) and consequently invalidate the
obtained result.
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Finally, the transmission coefficient for refracting rays reduces to the classical Fresnel trans-
mission coefficient [21]

Trefr =
4k−rN

k+
rN(

k−rN + k+
rN

)2

=
4
[(

n2
N − β̃2 − l̃2

)(
n2

cl − β̃2 − l̃2
)]1/2

(
n2

N − β̃2 − l̃2
)

+
(

n2
cl − β̃2 − l̃2

)
+2
[(

n2
N − β̃2 − l̃2

)(
n2

cl − β̃2 − l̃2
)]1/2

.

(48)

3. Results and discussion

3.1. Structural characteristics of the analysed fibres

In the calculations carried out we have chosen characteristics typical of poly-methyl-
methacrylate PMMA-based polymer optical fibres (POF). Then we will be able to compare
the results obtained for SI, clad-parabolic-profile GI and parabolic-profile MSI fibres with the
results for two existing MSI-POFs. Nevertheless, any conclusion drawn from this analysis can
be easily extrapolated to any kind of highly multimode optical fibre used as a transmission
medium.

For SI and clad-parabolic-profile GI fibres, we have chosen the value 1.492 as the highest
refractive index in the core and 1.402 as the refractive index of the cladding (ncl), whereas the
radius of the core of the fibre has been set to ρ = 490 µm. We have already demonstrated that
an MSI fibre of one layer is a limit case in which the power transmission coefficient reduces to
that corresponding to an SI fibre (see Eq. (38) in subsection 2.3). The other limit case consists
in an MSI fibre whose refractive index profile approximates to a clad-parabolic one of a GI
fibre. Provided that the MSI fibre has a sufficiently high number of layers and by maintaining
the width of each layer constant (i.e. ρi −ρi−1 = constant ∀i), this second case can be achieved
if we fit the refractive index of each layer to

nMSI,i = nGI (r)
∣∣∣
r=ρi−1

∀i (ρ0 = 0) .

This enables us to test the validity of the theoretical expression by comparing the results ob-
tained for a clad-parabolic-profile GI fibre with those for parabolic profile MSI fibres of an
arbitrary number of layers.

The two MSI-POFs investigated in this paper are the Eska-Miu fibre from Mitsubishi [26]
and the MSI-POF from TVER [1]. The physical dimensions of their layers are reproduced in
Table 1, whereas Figs. 2(a) and 2(b) show their respective refractive index profiles measured
with the aid of the inverse-near-field method [27, 28]. We have taken the value of 1.492 as the
refractive index of the innermost layer (n1), considering a value of 1.402 as the refractive index
of the cladding (ncl). The refractive indices of the remaining layers in between are adjusted
according to the measured refractive index profiles relative to the extreme values n1 and ncl.

Table 1. Physical dimensions of the different layers (outer radii in µm).

Layer 1 Layer 2 Layer 3 Layer 4

Eska-Miu 250 350 380 –

TVER 160 230 270 330
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(a) Eska-Miu fibre. (b) TVER fibre.

Fig. 2. Refractive index profiles corresponding to the MSI-POFs used.

3.2. Distribution of the power transmission coefficient for tunnelling and refracting rays on
the β̃2-l̃2 plane

The contour plots in Fig. 3 show the numerical results for the power transmission coefficient of
Eq. (33) as a function of the square of the ray invariants β̃ and l̃ for the wavelength λ = 650 nm
and for the different fibres considered in subsection 3.1.

The dashed dotted line superimposed on the β̃2-l̃2 plane shows the limit where a tunnelling
ray becomes a refracting one. In the case of the clad-parabolic-profile GI fibre (see Fig. 3(b)),
this boundary is restricted to the interval between (β̃2

min, n2
cl − β̃2

min) and (n2
cl, 0), where β̃2

min is
a minimum value below which there are only refracting rays [29]. Conversely, in SI and MSI
fibres this boundary extends along the whole β̃2-l̃2 plane, or more specifically, from (0, n2

cl) to
(n2

cl, 0). The discontinuity of the refractive index profile in the core-cladding interface ensures
this, even though the region of tunnelling rays is reduced as the jump in the discontinuity
decreases. The limit case constitutes a parabolic-profile MSI fibre of N → ∞ layers, in which
the refractive index profile reduces to a continuous graded-index one.

It can be observed in Fig. 3(a) that tunnelling rays have great significance in SI fibres, since in
most cases their power transmission coefficient is close to 0 and, therefore, they can propagate
long distances before being completely attenuated. This suggests that tunnelling rays should be
taken into account in geometric optics. As a consequence, it would be preferable the assignment
of a simplified value of T = 0 to tunnelling rays to a rejection of them. In contrast, the set of
Figs. 3(b) and 3(c) show that the region of tunnelling rays in both the clad-parabolic-profile GI
fibre and the parabolic-profile MSI fibre of N = 1000 layers is quite small. Additionally, it is
noticeable that the change of T in the transition region between tunnelling and refracting rays
is very abrupt, whereas in the case of an SI fibre T changes gradually as tunnelling rays become
refracting rays.

The cases corresponding to the Eska-Miu and TVER MSI-POFs, which share similar charac-
teristics (the former has three layers, whereas the latter has four), deserve careful consideration.
We can observe in Fig. 3(e) that the region of tunnelling rays in the TVER fibre is quite small
and similar to that of a clad-parabolic-profile GI fibre, whereas the Eska-Miu exhibits a wider
region of tunnelling rays, in accordance with Fig. 3(d) (their proportion to bound rays is also
more significant). In order to be able to understand the reason for such a behaviour, we have
to refer to their refractive index profiles (see Figs. 2(a) and 2(b)). Although the outermost layer
of the Eska-Miu fibre is extremely thin, the great difference between the refractive indices of
this layer and the cladding allows greater values of l̃2

max in Eq. (7) and, therefore, this leads to
a much greater extension of the region of tunnelling rays than in the case of the TVER fibre,
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(a) SI fibre.

(b) Clad-parabolic-profile GI fibre. (c) Parabolic-profile MSI fibre (N = 1000).

(d) Eska-Miu fibre. (e) TVER fibre.

Fig. 3. Contour plots of the power transmission coefficient T on the β̃2-l̃2 plane, calculated
for both tunnelling and refracting rays and for the wavelength λ = 650 nm. The dashed
dotted line shows the limit where a tunnelling ray becomes a refracting ray.
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where this difference is smaller.

3.3. Investigation of the limit cases of MSI fibres

Figure 4 shows graphs of the power transmission coefficient calculated using Eq. (33) with
constant l̃ = 0.255 for parabolic-profile MSI fibres of N = 1, 5, 10, 100, 1000 and 10000
layers, respectively. The vertical dashed dotted line superimposed on Fig. 4 shows again the
limit where a tunnelling ray becomes a refracting ray, which occurs when β̃2 + l̃2 = n2

cl, or
more specifically, at β̃ = 1.3786 for the constant value l̃ = 0.255.

Fig. 4. Evolution of the power transmission coefficient T as a function of the number of
layers N of an MSI fibre with constant l̃ = 0.255. Results obtained for the wavelength
λ = 650 nm. The blue and red solid curves denote the results for the SI and clad-parabolic-
profile GI fibres, respectively. The dashed dotted vertical line shows the division between
tunnelling and refracting rays, which occurs at β̃ = 1.3786, when β̃2 + l̃2 = n2

cl.

As could be expected, the power transmission coefficient for an MSI fibre of one layer is the
same as that for an SI fibre. On the other hand, it is clearly noticeable that as the number of
layers increases, the obtained results for the parabolic-profile MSI fibres approximate better to
the result corresponding to a clad-parabolic-profile GI fibre. For instance, the power transmis-
sion coefficient calculated for a parabolic-profile MSI fibre of N = 1000 layers is very similar
to that for a clad-parabolic-profile GI fibre, and in the limit case of N = 10000 layers, both
results are virtually the same. In view of the results, we can safely conclude that our theoretical
expression is valid and sufficiently accurate.

3.4. Comparison between the uniform method and the WKB approximation

Figure 5 allows us to compare the results obtained using the power transmission coefficient T
derived from the uniform method with the results for T based on the WKB solutions of the
scalar wave equation. The solid curves plot the power transmission coefficient of Eq. (33) as
a function of β̃ with constant l̃ = 0.255, whereas the dashed curves plot T corresponding to
Eqs. (43) and (48). In addition, we have used different colours to identify the results obtained
for the parabolic-profile MSI fibre of N = 1000 layers (blue curves) and both Eska-Miu (red
curves) and TVER (green curves) MSI-POFs.

(C) 2006 OSA 20 February 2006 / Vol. 14,  No. 4 / OPTICS EXPRESS  1427
#10272 - $15.00 USD Received 11 January 2006; revised 6 February 2006; accepted 13 February 2006



Fig. 5. Comparison between the uniform method and the WKB approximation. Plots of the
power transmission coefficient T with constant l̃ = 0.255 for the wavelength λ = 650 nm.
Results obtained for the parabolic-profile MSI fibre of N = 1000 layers and both Eska-Miu
and TVER MSI-POFs. Legend: T of Eq. (33): solid curves; T of Eqs. (43) and (48): dashed
curves. The dashed dotted vertical line at β̃ = 1.3786 corresponds to the limit β̃2 + l̃2 = n2

cl.
To the right of this limit value rays are tunnelling, whereas to the left they are refracting.

As anticipated in subsection 2.4, the extraordinary coincidence of dashed and solid curves on
Fig. 5 indicates that the WKB representations are highly accurate for practically all tunnelling
and refracting rays except for points located very close to the division between tunnelling and
refracting rays. Within this transition region the WKB analysis is inappropriate and leads to an
incorrect value of the power transmission coefficient [7, 8, 24]. Instead, Eq. (33) of the uniform
method must be applied. It should be emphasized that this equation is not only valid for every
domain of the set of leaky rays, but it also incorporates them into a single analytical expression,
which is considerably advantageous for computational purposes [4, 9].

The jumps observed on the blue dashed curve corresponding to tunnelling rays in the
parabolic-profile MSI fibre of N = 1000 layers are obtained as a result of the factors inside
the product of Eq. (43), which account for the discontinuities of the profile in the evanescent
region. It must be pointed out that as the number of layers of an MSI fibre increases indefinitely,
the limit of the product of Eq. (43) reduces to the WKB integral of a GI fibre [7]. In contrast,
the red and green dashed curves show no jumps at all because it turns out that in the Eska-Miu
and the TVER MSI-POFs every tunnelling ray has its outermost turning point at the outermost
layer, i.e. rtp = ρN for all tunnelling rays.

4. Conclusions

We have obtained a single theoretical expression that allows the calculation of the power trans-
mission coefficient in MSI fibres. Such an expression will be of great benefit for computational
purposes, since its implementation will lead to more elaborate and accurate results when per-
forming computer simulations using the ray-tracing method. This theoretical expression has
been derived by using the method of uniform approximation and relies on the linearization of
the square of the core refractive index profile. In contrast to the WKB approximations, whose
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validity is restricted to specific domains of the set of leaky rays, this power transmission coef-
ficient is valid for tunnelling and refracting rays, and for the transition between them. We have
validated our theoretical model by carrying out several calculations of the power transmission
coefficient for different types of MSI fibres and by comparing them with the results correspond-
ing to SI and clad-parabolic GI fibres. The obtained results have also served us to find out that
tunnelling rays can have an important effect on the power attenuation along an MSI fibre and
that this effect depends strongly on the fibre refractive index profile.
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