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Abstract This paper reviews the theoretical analysis of light

propagation we have carried out on multimode multi-step index

(MSI) optical fibres. Starting from the Eikonal equation, we

derive the analytical expressions that allow calculating the ray

trajectories inside these fibres. We also analyse the effects of

leaky rays on the transmission properties of MSI fibres. For this

purpose, a single analytical expression for the evaluation of the

ray power transmission coefficient is calculated. Afterwards, we

investigate the effects of extrinsic and intrinsic coupling losses

on the performance of MSI fibres, providing analytical expres-

sions to calculate the coupling loss and, also, determining the

most critical parameters. Finally, we carry out a comprehen-

sive numerical analysis of the fibre bandwidth under different

source configurations.

Cross-section photographs of two different MSI-POFs (left:

Eska-Miu fibre; right: TVER fibre).
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1. Introduction

During the last decades glass optical fibres have been
widely used for transmitting information to very long dis-
tances at very high data rates [1, 2]. Simultaneously, re-
searchers have been experimenting with other materials
instead of the usual glass, in search of cheaper alterna-
tives that might lead to similar performances. In this re-
spect, polymer optical fibres (POFs) have been regarded as
the most suitable choice, because they are easy to handle,
flexible, and economical, although they are not used for
very long distances because of their relatively high attenu-
ation [3–5]. These characteristics make POFs especially
suitable for short-haul communications links, where dis-
tances to cover are generally less than one kilometre.

The development of low-attenuation perfluorinated
graded-index (GI) polymer optical fibres (GI-POFs) by
professor Koike at Keio University [6–9], which surpass
the capacity of the so far developed step-index (SI) polymer
optical fibres (SI-POFs), has given rise to a great deal of

applications and new technologies involving the employ-
ment of POFs [10,11]. This fact has motivated Mitsubishi
Rayon Co., Ltd. [12] and researchers at the University of
TVER [13] to develop new prototypes corresponding to
another variant of POFs, namely the multi-step index (MSI)
polymer optical fibre (MSI-POF). MSI-POFs are intended
to offer the same advantages of GI-POFs while maintain-
ing the manufacturing costs sufficiently low [14,15]. This
is achieved due to the simpler processes involved in the
manufacture of these types of fibres, as well as to the bet-
ter stability of their refractive index profiles with ageing,
temperature fluctuations and humidity changes. As a conse-
quence, MSI-POFs combine the manufacturing simplicity
of their SI counterparts and the higher bandwidths achiev-
able with GI fibres. For instance, an MSI-POF of three
layers with a numerical aperture (NA) of 0.25 allows band-
widths as high as 250 MHz · 100 m, thus complying with
the IEEE1394/S400 specification [12,14]. To date, the only
available MSI-POFs are highly multimode, so we have only
considered multimode MSI fibres, putting special emphasis
on poly-methyl-methacrylate (PMMA) based POFs.
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With the aim of clarifying some of the theoretical as-
pects regarding the performance of MSI fibres, we have
carried out a comprehensive analysis of light propagation
properties in such fibres using geometric optics. The main
purpose of this review is, therefore, to report on the obtained
theoretical results, whose validity has been corroborated
by several experimental measurements and numerical sim-
ulations [16–18]. Our study begins with the derivation of
the ray invariants which allow us to discuss the charac-
teristics of the ray trajectory and set the classification of
rays into bound, refracting and tunnelling categories. We
also calculate a single analytical expression of the power
transmission coefficient for both tunnelling and refracting
rays. Afterwards, we carry out an analysis of both extrinsic
and intrinsic coupling losses in MSI fibres. In the former
case, we study the three fundamental types of mechanical
misalignments between fibres, namely, longitudinal separa-
tion, axial or transverse offset, and angular misalignment.
In the latter case, we investigate the effects of tolerances
to each waveguide parameter that take place in standard
manufacturing processes. In addition, we carry out a nu-
merical analysis of pulse dispersion and bandwidth in MSI
fibres under different light source configurations. Finally,
we summarize the main conclusions derived from this work.

2. Ray propagation using geometric optics

The description of the light propagation in the MSI fibres
analysed here is very simple, because their multimode be-
haviour enables us to adopt the classical geometric optics
approach, replacing the concept of mode used in the elec-
tromagnetic theory of light by the concept of ray [19, 20].
Therefore, the most direct and conceptually simple way
to describe the propagation of light in MSI fibres is by
tracing rays along the fibre core. Ray propagation through
the optical fibre is based on the reflection and refraction
phenomena, both being susceptible of analysis by means of
the well-known Snell’s laws. These laws are also applicable
to every kind of optical fibre, by considering the interface
between the core and the cladding to be locally plane at the
reflection point [20].

2.1. Derivation of the ray path equation

The general equation for a ray path is the Eikonal equation,
which may be written as follows [19–21]

d
ds

(
n (r)

dr
ds

)
=

−→∇n, (1)

where s is the distance measured along the path, r is the
position vector for a point on the ray path, dr/ds is the unit
vector tangent to the ray path, and z is the fibre axis.

For the calculations below we will consider the most
general refractive index profile in MSI fibres, which can be

expressed as

n (r) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

n1; r < ρ1,

n2; ρ1 � r < ρ2,
...

nN ; ρN−1 � r < ρN ,

ncl; r � ρN .

(2)

For the sake of simplicity, we will neglect the possible
effects of the protective jacket, assuming that the cladding
extends to infinity.

2.2. Ray invariants and classification of rays

If we use cylindrical coordinates (r, ψ, z) and name the
angle between the ray path and the longitudinal axis θzi

,
then from the ray path equation we can derive the ray in-

variant β̃ as

β̃ = ni cos θzi
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

n1 cos θz1 ; r < ρ1,

n2 cos θz2 ; ρ1 � r < ρ2,
...

nN cos θzN
; ρN−1 � r < ρN ,

ncl cos θt; r � ρN ,

(3)

which is related to the translational invariance of the MSI
fibre.

Additional operations on the ray path equation lead to

the invariant l̃ given by the dimensionless form

l̃ =
ρi

ρN
ni sin θzi

cos θφi
; i = 1 . . . N, (4)

which accounts for the azimuthal symmetry of the fibre. θφi

is the angle that the tangent to the interface between two
consecutive layers makes with the path projection onto the
fibre cross-section. Fig. 1 shows the angles used to define
both ray invariants.

The ray invariants β̃ and l̃ are very important quantities
because they allow us to instantly determine the direction
of the ray at any position along its trajectory. They are not
independent of each other, since they are related by Snell’s
law.

Using the definition of the ray invariants, the radial
component of the ray path equation yields

g (r) = β̃2

(
dr

dz

)2

= n2 (r) − β̃2 − l̃2ρ2
N

r2
. (5)
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Figure 1 Definition of the

angles θzi and θφi .
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A convenient way to classify rays in MSI fibres is to
make use of the ray path equation g (r) to determine the
range of values of the radial coordinate r for which rays can
propagate [20]. Ray paths can exist only if the right-side
of Eq. (5) is non-negative, corresponding to an oscillating
field, whereas we have an evanescent field if the right-side
of Eq. (5) is negative [20, 22–24].

Taking this into account, we can classify rays as fol-
lows:

– Bound rays: These rays are bound to the fibre core and
do not leak into the cladding,{

ncl � β̃ � n1,

0 � l̃ � l̃max

(
β̃
)

.
(6)

– Tunnelling rays: These rays lose slowly part of their
power to the cladding by means of a tunnelling mecha-
nism, {

0 � β̃ < ncl,(
n2

cl − β̃2
)1/2

� l̃ � l̃max

(
β̃
)

.
(7)

– Refracting rays: These rays reach the cladding and
attenuate very fast as they propagate,{

0 � β̃2 + l̃2 < n2
cl. (8)

In the statements above, l̃max

(
β̃
)

is the maximum

value of l̃ along the curve g (r) = 0, i.e.

l̃2max

(
β̃
)

=
(
n2

x − β̃2
) ρ2

x

ρ2
N

, (9)

x being an integer value satisfying

x = min {all possible values of i} i = 1 . . . N

so that β̃ � β̃min, and

β̃2
min =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

max
{

0,
ρ2

j+1n
2
j+1 − ρ2

i n
2
i

ρ2
j+1 − ρ2

i

}
;{

i = 1 . . . N − 1,

j = i . . . N − 1,

0; i = N.
(10)

2.3. Ray path parameters

From the knowledge of the ray path parameters, it is possi-
ble to obtain the analytical equations which describe the ray
trajectories inside a fibre. This is due to the fact that each

ray is fully characterised by the invariants β̃ and l̃ [20].

The ray path parameters are classified as follows:

– The path length is the distance between successive re-
flections, and it is very useful to calculate the attenu-
ation suffered by each ray due to absorption.

– The ray half-period is the distance between successive
reflections, but, in this case, measured along the symme-
try axis, and it is very useful to describe ray trajectories.

– The ray transit time is defined as the time taken for a
ray to propagate a distance along a waveguide, and it is
the most important quantity required to describe pulse
spreading. It is calculated as follows

t =
1
c

∫
nds =

1
cβ̃

∫ z

0

n2dz. (11)

We can generalize Eq. (11) to the N layer expression

t =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A

⎧⎪⎪⎨
⎪⎪⎩

n2
i+1 < β̃2 +

l̃2ρ2
N

ρ2
i

< n2
i

ρ2
i−1 <

l̃2ρ2
N

n2
i − β̃2

< ρ2
i

i = 1 . . . N,

B

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n2
y+1 < β̃2 +

l̃2ρ2
N

ρ2
y

< n2
y

ρ2
x−1 <

l̃2ρ2
N

n2
x − β̃2

< ρ2
x

[
y = 2 . . . N,

x = 1 . . . y − 1,

(12)
where

A =
z

cβ̃
n2

i ,

B =
z

cβ̃

n2
x

n2
x − β̃2

Gx +
y∑

i=x+1

n2
i

n2
i − β̃2

(Gi − Hi)

1
n2

x − β̃2
Gx +

y∑
i=x+1

1
n2

i − β̃2
(Gi − Hi)

,

Gi = ρi

√
n2

i − β̃2 − l̃2ρ2
N

ρ2
i

,

Hi = ρi−1

√
n2

i − β̃2 − l̃2ρ2
N

ρ2
i−1

,

and {
ρ0 = 0,

nN+1 = ncl.

We will use Eq. (12) in order to calculate the impulse
response of the fibre and its bandwidth.

2.4. Power transmission coefficients for leaky
rays

Multimode MSI fibres can propagate leaky rays (i.e. refract-
ing and tunnelling rays) in addition to bound rays, when
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Figure 2 Trajectory of a

tunnelling ray. Part of the ray

power is transferred from the

turning point at P to the clad-

ding at Q.

they are illuminated by sources which emit light over a
wide range of directions, as is the case of LEDs [20, 25].
These leaky rays are responsible for the loss of power by
radiation and, therefore, they have a great significance in
the description of light propagation within a multimode
MSI fibre [26].

Compared to refracting rays, tunnelling rays undergo a
very slow leakage and, therefore, they play a major role in
the determination of the power attenuation along a fibre [27,
28]. Tunnelling rays disappear in the core at the turning
points and reappear in the cladding at a finite distance from
the core-cladding interface. For these rays to be able to
propagate in the cladding, it is necessary to have a positive
g (r) for all values of r beyond a certain radius rrad given
by the condition g (r)|r=rrad

= 0. Hence

rrad =
l̃ρN(

n2
cl − β̃2

)1/2
. (13)

The trajectory of a tunnelling ray is shown in Fig. 2.
At each turning point, part of the ray power is lost to

the cladding by means of a tunnelling mechanism, which
is analogous to the frustrated total internal reflection [29–
33]. This mechanism is caused by the curvature of the
core-cladding interface [27]. The ray theory does not serve
to understand the physical mechanism that produces this
type of radiation [34]. Its explanation has to be looked for
by using Maxwell’s equations and, more specifically, the
modal solution of the wave equation [25, 35].

Nevertheless, we can still retain the ray paths of geomet-
ric optics and incorporate this wave effect by conveniently
defining a power transmission coefficient T and assuming
that power loss occurs only at turning points along the ray
path [20]. Furthermore, such an approach has the additional
advantage of allowing us to extend its applicability to the
analysis of refracting rays. Therefore, we define T as the
fraction of incident power transmitted to the cladding

T = 1 − power of the reflected ray

power of the incident ray
. (14)

The evaluation of this power transmission coefficient
by an electromagnetic-mode analysis presents a boundary-
value problem that is virtually intractable for geometries
involving more than two layers [28], which is the usual

Figure 3 (online color at: www.lpr-journal.org) The linearized

profile used in the analysis corresponds to AB (red line). At rtp

the ray is partially reflected and the position rrad in the cladding

stands for the point where the transmitted ray reappears.

case in MSI fibres. We can overcome such a problem if
we linearize the square of the core refractive index in the
profile of the MSI fibre at the top of the jump at r = ρN ,
as shown in Fig. 3 [28, 36]. We obtain

n2 (r) =

{
δ (r − ρN ) + n2

N ; r � ρN ,

n2
cl; r � ρN ,

(15)

where nN is the refractive index and ρN is the outer radius
of the N th layer (i.e. the outermost one).

The value of δ is the slope of the core profile at r = ρ−N

δ =
dn2 (r)

dr

∣∣∣∣
r=ρ−

N

=
n2

N − n2
N−1

ρN − ρN−1
, (16)

and δ < 0 whenever the refractive index profile decreases
with r.

Provided that the change in the refractive index profile
over this region is small, i.e. that we are considering weakly
guiding fibres, the results obtained are independent of polar-
ization [37]. By assuming that kρN � 1, so that the fields
exhibit local-plane-wave, or ray, characteristics [38,39], we
can work with the solutions of the scalar wave equation.
(k = 2π/λ is the wavenumber and λ the wavelength in
vacuum.)

The linearization of n2 (r) in Eq. (15) allows us to cal-
culate these solutions by following the same procedure as
for SI and GI fibres, which is accurately described in [40].

Using the ray invariants given by Eqs. (3) and (4), we
determine the power transmission coefficient as [40]

T =
4
π2

C2

X2 + Y 2
, (17)
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where the coefficients X and Y are given by

X = −A′
1A2 + B′

1B2

+ A1 (C1A2 − C2A
′
2) − B1 (C1B2 − C2B

′
2) ,

Y = A′
1B2 + B′

1A2

− B1 (C1A2 − C2A
′
2) − A1 (C1B2 − C2B

′
2) ,

where

A1 ≡ Ai (ξ1) , B1 ≡ Bi (ξ1) ,

A2 ≡ Ai (ξ2) , B2 ≡ Bi (ξ2) ,

prime denotes differentiation with respect to the arguments,
and Ai (ξ) and Bi (ξ) denote the Airy functions [41]. For
the profile given in Eq. (15), ξ1 is evaluated by performing
a numerical integration

ξ1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
−

[
3
2

∫ rtp

ρN

kr1 (r) dr

]2/3

; if k2
r1

> 0,

+

[
3
2

∫ ρN

rtp

|kr1 (r)|dr

]2/3

; if k2
r1

< 0,

(18)

whereas ξ2 is readily calculated as

ξ2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−

⎡
⎢⎣3

2
kρN

⎧⎪⎨
⎪⎩
(
n2

cl − β̃2 − l̃2
)1/2

−l̃ arccos

⎡
⎢⎣ l̃(

n2
cl − β̃2

)1/2

⎤
⎥⎦
⎫⎪⎬
⎪⎭
⎤
⎥⎦

2/3

;

if k2
r2

> 0,

+

⎡
⎢⎣3

2
kρN

⎧⎪⎨
⎪⎩l̃ ln

⎡
⎢⎣ l̃ +

(
β̃2 + l̃2 − n2

cl

)1/2

(
n2

cl − β̃2
)1/2

⎤
⎥⎦

−
(
β̃2 + l̃2 − n2

cl

)1/2

⎫⎪⎬
⎪⎭
⎤
⎥⎦

2/3

;

if k2
r2

< 0,

(19)

k2
r1

≡ k2
r1

(ρN ) and k2
r2

≡ k2
r2

(ρN ) being given by

kr1 (r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k

[
n2 (r) − β̃2 − l̃2ρ2

N

r2

]1/2

;

if n2 (r) > β̃2 +
l̃2ρ2

N

r2
,

ık

[
β̃2 +

l̃2ρ2
N

r2
− n2 (r)

]1/2

;

if n2 (r) < β̃2 +
l̃2ρ2

N

r2
,

(20)

kr2 (r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k

(
n2

cl − β̃2 − l̃2ρ2
N

r2

)1/2

;

if n2
cl > β̃2 +

l̃2ρ2
N

r2
,

ık

(
β̃2 +

l̃2ρ2
N

r2
− n2

cl

)1/2

;

if n2
cl < β̃2 +

l̃2ρ2
N

r2
.

(21)

In Eq. (18), rtp is the root of kr1 (r) = 0 [20]

rtp = − 1
3δ

[
b +

1
21/3

(
L +

√
3M

)]
, (22)

where

L =
(
F 2 + G2

)1/6
cos

[
1
3

arctan
(

G

F

)]
,

M =
(
F 2 + G2

)1/6
sin

[
1
3

arctan
(

G

F

)]
,

F = −2b3 − 27δ2c,

G = 3
√

3
(−4δ2b3c − 27δ4c2

)1/2
,

b = −δρN + n2
N − β̃2,

c = −l̃2ρ2
N .

The coefficients C1 and C2, which also depend on an-
other four coefficients M1, M2, L1 and L2, are shown
below

C1 = (L2 − L1)/M1, C2 = −M2/M1,

M1 =
kr1

(−ξ1)
1/2

, M2 =
−kr2

(−ξ2)
1/2

,

L1 =
−kr1

4 (−ξ1)
3/2

− k′
r1

2kr1

, L2 =
kr2

4 (−ξ2)
3/2

− k′
r2

2kr2

,
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where

k′
r1

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

k
l̃2/ρN + δ/2(

n2
N − β̃2 − l̃2

)1/2
; if k2

r1
> 0,

ık
−l̃2/ρN − δ/2(

β̃2 + l̃2 − n2
N

)1/2
; if k2

r1
< 0,

(23)

k′
r2

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

k
l̃2/ρN(

n2
cl − β̃2 − l̃2

)1/2
; if k2

r2
> 0,

ık
−l̃2/ρN(

β̃2 + l̃2 − n2
cl

)1/2
; if k2

r2
< 0.

(24)

2.5. Distribution of the power transmission
coefficient in terms of the ray invariants

In order to illustrate the significance and the extension
of tunnelling rays we will analyse the “Eska-Miu” MSI-
POF from Mitsubishi [12] and the “TVER” MSI-POF [13].
The former has three layers, whereas the latter has four.
Their refractive index profiles, measured with the aid of
the inverse near-field method [42, 43], and the physical
dimensions of the different layers are reproduced in Fig. 4
and in Table 1.

We have chosen characteristics typical of PMMA-based
POFs: we have taken the value of 1.492 as the refractive
index of the innermost layer (n1), considering a value of
1.402 as the refractive index of the cladding (ncl), yielding
a peak numerical aperture of 0.51. The refractive indices
of the remaining layers in between have been adjusted
according to the measured refractive index profiles in Fig. 4
relative to the extreme values n1 and ncl.

The contour plots in Fig. 5 show the numerical results
for the power transmission coefficient of Eq. (17) as a func-

tion of the square of the ray invariants β̃ and l̃ for the
wavelength λ = 650 nm.

The dashed dotted line superimposed on the β̃2-l̃2 plane
shows the limit where a tunnelling ray becomes a refracting
one. In MSI fibres this boundary extends along the whole

β̃2-l̃2 plane, or more specifically, from (0, n2
cl) to (n2

cl, 0).
It can be observed that the region of tunnelling rays

in the TVER fibre is quite small, whereas the Eska-Miu
exhibits a wider region of tunnelling rays (their proportion

Table 1 Physical dimensions of the different layers of the inves-

tigated MSI-POFs. The outer radius of each ith layer is denoted

by ρi and it is measured in μm.

ρ1 ρ2 ρ3 ρ4

Eska-Miu 250 350 380 –

TVER 160 230 270 330

(a) Eska-Miu fibre.

(b) TVER fibre.

Figure 4 (online color at: www.lpr-journal.org) Refractive-

index profiles of the investigated MSI-POFs.

to bound rays is also more significant). In order to be able
to understand the reason for such a behaviour, we have to
refer to their refractive index profiles (see Figs. 4(a) and
4(b)). Although the outermost layer of the Eska-Miu fibre is
extremely thin, the great difference between the refractive
indices of this layer and the cladding allows greater values

of l̃2max in Eq. (9) and, therefore, this leads to a much greater
extension of the region of tunnelling rays than in the case of
the TVER fibre, where this difference is smaller. Therefore,
the significance of tunnelling rays in MSI fibres is subjected
to the refractive index profile.

Tunnelling rays can propagate long distances before
being completely attenuated because, in most cases, their
power transmission coefficient is close to 0. This fact sug-
gests that tunnelling rays should be taken into account in
geometric optics and, therefore, it would be preferable the
assignment of a simplified value of T = 0 to tunnelling
rays to a rejection of them.

3. Analysis of coupling losses

The insertion loss of a fibre splice or a connector is the pri-
mary measure of its quality. For this reason, in the process
of splicing or in the design of a connector it is of critical
importance to understand and evaluate the sources of loss
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(a) Eska-Miu fibre.

(b) TVER fibre.

Figure 5 (online color at: www.lpr-journal.org) Contour plots

of the power transmission coefficient T on the β̃2-l̃2 plane, cal-

culated for both tunnelling and refracting rays and for the wave-

length λ = 650 nm. The dashed dotted line shows the limit where

a tunnelling ray becomes a refracting ray.

in fibre-to-fibre coupling, which are classified as extrinsic
and intrinsic coupling losses.

3.1. Extrinsic coupling loss

Mechanical misalignment is a major source of extrinsic
coupling losses when joining two fibres [44, 45]. The most
important types of misalignments between fibres are the
longitudinal separation, the axial or transverse offset, and
the angular misalignment, as shown in Fig. 6. We present
below the theoretical calculations, assuming in all cases a
uniform optical power density.

In the case of the longitudinal separation, we have to
calculate the total power Pac accepted by the receiving fibre
when the fibre ends are longitudinally separated by a gap

s

(a) Longitudinal separation s.

d

(b) Transverse offset d.

�

(c) Angular misalignment α.

Figure 6 (online color at:

www.lpr-journal.org) Mechani-

cal misalignments between fibres.

The transmitting fibre is the blue

one, whereas the receiving fibre

is the red one.

s [45–48]. We have

LLS = −10 log
Pac

Pbr
, (25)

which is valid for s � ρ1/ tan θ2, with

Pac = P 1
1 +

p∑
i=2

P i
1 +

q∑
j=2

P 1
j +

N∑
j=2

v∑
i=u

P i
j ,

Pbr = π2 I0

n2
0

N∑
i=1

(
ρ2

i − ρ2
i−1

)
NA2

i ,

where NAi =
(
n2

i − n2
cl

)1/2
is the local numerical aper-

ture, I0 is the maximum intensity of a Lambertian light
source, n0 the refractive index of the source medium, and

θi = arcsin
NAi

n0
.

P i
j denotes the power contribution of the ith layer of

the transmitting fibre to the jth layer of the receiving fibre,
i.e.

P 1
1 =

π2I0

n2
0

NA2
1

(ρ1 + s tan θ1)
2 ρ4

1,

P i�2
1 =

π2I0

n2
0

NA2
i{

1 + 2s tan θi
ρi − ρi−1

}
×

[
ρ2
1 − (ρi−1 − s tan θi)

2
]
,

P 1
j�2 =

π2I0

n2
0

ρ2
1NA2

j

(ρ1 + s tan θ1)
2

×
[
min

{
ρ2

j , (ρ1 + s tan θ1)
2
}
− ρ2

j−1

]
,
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P i�2
j�2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π2I0

n2
0

NA2
j{

1 + 2s tan θi
ρi − ρi−1

}
×
[
min

{
ρ2

j , (ρi + s tan θi)
2
}

− max
{

ρ2
j−1, (ρi−1 − s tan θi)

2
}]

;

if i < j,
π2I0

n2
0

NA2
i{

1 + 2s tan θi
ρi − ρi−1

}
×
[
min

{
ρ2

j , (ρi + s tan θi)
2
}

− max
{

ρ2
j−1, (ρi−1 − s tan θi)

2
}]

;

if i � j.

The integers p, q, u and v are the limits of integration,
satisfying

p = max {all possible values of k} so that

ρk−1 − s tan θk < ρ1; p = 2 . . . N,

q = max {all possible values of k} so that

ρk−1 � ρ1 + s tan θ1 < ρk; q = 2 . . . N,

u = min {all possible values of k} so that

(ρk + s tan θk � ρj−1) and (ρk−1 − s tan θk < ρj) ;

2 � u � v � N,

v = max {all possible values of k} so that

(ρk + s tan θk � ρj−1) and (ρk−1 − s tan θk < ρj) ;

2 � u � v � N.

In the case of the transverse offset, denoted by d, the
power coupled into the receiving fibre is calculated by inte-
grating the power density over the overlap region between
the transmitting and receiving fibres [47, 49]. Thus we ob-
tain

LTO = −10 log

(
2

[
π

N∑
i=1

(
ρ2

i − ρ2
i−1

)
NA2

i

]−1

×
{

N∑
i=j+1

NA2
i Ai + NA2

j (26)

×
[
ρ2

j arccos
d

2ρj
− d

2
(
ρ2

j − d2/4
)1/2

]})
,

where

Ai = ρ2
i arccos

d

2ρi
− ρ2

i−1 arccos
d

2ρi−1

+
d

2

{(
ρ2

i−1 − d2/4
)1/2 − (

ρ2
i − d2/4

)1/2
}

,

and j is an integer value that satisfies

ρj−1 � d/2 < ρj .

Finally, in the case of the angular misalignment, quanti-
fying the incurred losses in MSI fibres may involve cum-
bersome calculations. Nevertheless, we can obtain a simple
and relatively accurate expression for an angular misalign-
ment α, provided that it is sufficiently small (α � 10◦), if
the following assumptions are made [24, 44]:

– the amount of power lost outside the area of the receiv-
ing fibre is neglected, and

– the losses due solely to the angular misalignment are
obtained without taking into account the refraction ef-
fect.

The coupling loss for the angular misalignment LAM

is

LAM = −10 log

(
2

[
π

N∑
i=1

(
ρ2

i − ρ2
i−1

)
NA2

i

]−1

×
{

j∑
i=2

NA2
i δi + NA2

1ρ
2
1

×
[
arccos q1 − q1

(
1 − q2

1

)1/2
]})

,

(27)

where

δi = ρ2
i arccos qi − ρ2

i−1 arccos qi−1

+ ρ2
i−1qi−1

(
1 − q2

i−1

)1/2 − ρ2
i qi

(
1 − q2

i

)1/2
,

qi stands for

qi =
ni sin α

2 (n2
i − n2

cl)
1/2

,

and j is an integer value that satisfies

NAj−1

nj−1
� sin α√

2
<

NAj

nj
.

We have performed several computer simulations using
the ray-tracing method in order to compare the coupling
loss obtained for each mechanical misalignment and deter-
mine the most critical one. We have used a hypothetical
source covering the whole input surface of the transmitting
fibre and emitting a uniform mode distribution (UMD) with
a numerical aperture NAinput = 0.65 (ensuring that the
launched rays will fill the effective solid acceptance angle
of the transmitting fibre). We have launched approximately
200 000 rays into the Eska-Miu and the TVER fibres. This
number ranges between an upper boundary delimited by
the total number of modes that can propagate within the
fibres and a lower boundary to ensure sufficiently smooth
and accurate results. We also include the analytical results
obtained from the theoretical expressions.

It is worthy of remark that our numerical simulations
involve only ideal fibres, whereas in real fibres there are
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Figure 7 (online color at: www.lpr-journal.org) Coupling loss

against normalized longitudinal separation s/ρN for various trans-

verse offsets. The analytical results are denoted by �.

many intrinsic physical phenomena, such as differential
mode attenuation and mode coupling, which can give rise
to many different effects that can have an influence on the
fibre transmission characteristics [50–55]. The implications
of these effects are explained in detail in [16].

We have plotted on Fig. 7 the results for the coupling
losses (in dB units) against the normalized longitudinal
separation s/ρN corresponding to different transverse off-
sets and for both MSI-POFs (ρN denotes the radius of
the outermost layer of the fibre, 380 μm for the Eska-Miu
fibre or 330 μm for the TVER one). The analytical results
superimposed on the graph are obtained using Eq. (25).
Notice that the validity of this analytical formula is lim-
ited to the region where s � ρ1/ tan θ2, which has a
value of s/ρN = 1.4389 for the Eska-Miu fibre and of
s/ρN = 1.1595 for the TVER fibre.

At first sight, it can be seen that the analytical expres-
sions show fairly pessimistic values for both fibres, in con-
trast to the numerical results in the absence of any trans-
verse offset (d/ρN = 0), so we can conclude that the former
provide an upper bound for coupling losses.

Additionally, Fig. 7 reveals that coupling losses are
more sensitive to a transverse offset than to a longitudinal
separation. For instance, in the case of the Eska-Miu fibre,
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Figure 8 Coupling loss against normalized transverse offset

d/ρN for various longitudinal separations. The analytical results

are denoted by �.

for a transverse offset d/ρN = 1.05 and no longitudinal
separation (s/ρN = 0) coupling losses are approximately
5.4 dB, in comparison with the much lower value of 0.57 dB
achieved for a longitudinal separation s/ρN = 1.05 and
no transverse offset (d/ρN = 0). Therefore, low coupling
losses require a very small transverse offset, whose effects
will be analyzed in more detail shortly.

Let us now compare the numerical results for the Eska-
Miu and TVER fibres. We can observe that, on the one
hand, in the absence of any transverse offset, coupling
losses are slightly higher for the Eska-Miu fibre than for
the TVER fibre as longitudinal separation increases. On the
other hand, coupling losses are much higher for the TVER
fibre than for the Eska-Miu fibre when there is a transverse
offset. Both effects rely on the fact that the distribution of
light power within the layers of the fibre depends on its
refractive index profile (further information can be found
in [16]).

We present now in Fig. 8 the results for coupling losses
as a function of the normalized offset d/ρN for different
longitudinal separations.

By comparing the numerical results in the absence of
any longitudinal separation between fibre ends (s/ρN =
0) with the analytical coupling loss, we can observe that
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the latter shows slightly higher values, since it involves
overfilled mode distribution conditions. Even so, it is clear
that both results are in good agreement.

Let us now compare the numerical results obtained for
both MSI-POFs. In the case of the Eska-Miu fibre, a trans-
verse offset equal to the radius of the fibre (d/ρN = 1)
when there is no longitudinal separation (s/ρN = 0) leads
to a coupling loss of approximately 5.0 dB. This effect is
even more dramatic on the TVER fibre, whose coupling
loss turns out to be 7.0 dB. Indeed, these values are cer-
tainly higher than those obtained for longitudinal sepa-
rations alone (even small offsets result in high coupling
losses), which is indicative of the greater importance of
transverse offsets as regards coupling loss.

It can be observed that, as the longitudinal separation
between fibres increases, coupling loss increases more and
more slowly with the normalized transverse offset. This
behaviour can be explained on the assumption that the light
exiting the transmitting fibre generates a divergent cone of
radiation that overlaps the cross-section of the receiving
fibre. As this cone is moved along the transverse direction,
the power captured inside decreases. The decrease in power
is much slower when considering larger longitudinal sepa-
rations, for which the cross-section of the cone of radiation
is bigger, and therefore, the power distribution is smoother.

All in all the transverse offset has so far proved to be the
most critical parameter when dealing with coupling losses
for MSI-POFs.

Finally, the results in Fig. 9 show the behaviour of cou-
pling loss with an angular misalignment α for different
transverse offsets. In these measurements the 0-dB refer-
ence point is fixed at d/ρN = 0, s/ρN = 1, and α = 0◦.

Again, it is clear that the analytical predictions can be
regarded as an upper bound for both fibres, provided that
the effects of a transverse offset or a longitudinal separation
are discarded.

We can observe that coupling losses depend weakly
on the angular misalignment (in contrast with the high
sensitivity to the transverse offset of coupling losses). Thus,
it can be concluded that angular misalignments are not as
critical as transverse offsets, provided that they are kept
sufficiently small. In this respect, we have found that losses
always remain well below 3 dB for practical values of the
angular misalignment.

3.2. Intrinsic coupling loss

The extrinsic coupling losses analysed in the previous sub-
section can be controlled and cancelled or, at least, mini-
mized to a practically negligible value by improving the
fibre joining techniques. Despite this fact, all methods con-
tinue to have intrinsic contributions to loss. The intrinsic
coupling losses arise from the inevitable variations in wave-
guide properties as a result of standard manufacturing pro-
cesses, which affect the light propagation characteristics
of the fibres being joined. For this reason, we have investi-
gated the effects of tolerances to each waveguide parameter,
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Figure 9 (online color at: www.lpr-journal.org) Coupling loss

against angular misalignment α (in degrees) for various transverse

offsets. The analytical results are denoted by �.

(a) Radius mismatch. (b) Numerical aperture mismatch.

(c) Axial eccentricity. (d) Circular eccentricity.

Figure 10 (online color at: www.lpr-journal.org) Variations in

waveguide properties that contribute to intrinsic coupling losses.

The transmitting fibre is the blue one, whereas the receiving fibre

is the red one. The dots show the symmetry axes corresponding

to each fibre.

namely, the surface diameter of each core, the axial eccen-
tricity between each core and cladding (i.e. the deviation
of the concentricity between them), their circular eccen-
tricity (or ellipticity), and the numerical aperture. This is
summarized in Fig. 10.

The study of MSI fibres is complicated by the fact
that they consist of several layers, which means that the
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number of parameters that are liable to vary multiply as the
number of layers increases. Thus, the evaluation of intrinsic
coupling losses for MSI fibres can only be tackled from
a statistical point of view. Using the ray-tracing method,
we have run a set of computer simulations of 5000 trials
(which has proved to be enough) that involve joining two
fibres randomly chosen from a given population following
a normal distribution [17, 56].

Fig. 11 shows the results obtained for the coupling loss
when only one of the possible waveguide parameters is
varied and also when the mismatches are applied all to-
gether for the Eska-Miu and TVER MSI-POFs. The ordi-
nate shows the cumulative percentage of fibre joints that
have intrinsic coupling losses lower than the value given in
the abscissa. Each waveguide parameter has a normalized
standard deviation of 5%, or a value of 0.268 in the case of
the circular eccentricity mismatch. It must be taken into ac-
count that the values for the circular eccentricity must be, by
definition, in the interval [0, 1) (since e = (1−b2/a2)1/2, a
being the fibre major semi-axis and b the fibre minor semi-
axis). If we had chosen the value 0.5 as the normalized
standard deviation of the circular eccentricity mismatch, it
would be expected that approximately 227 samples would
exceed the maximum allowed value out of a set of com-
puter simulations of 5000 trials (the probability of obtaining
a random deviation outside the allowed interval, i.e. out-
side two standard deviations, would be of 4.55%). In such
cases the trial would be aborted and the value outside the
scope would be replaced with a new random choice (that
is, there would be a truncation of the normal distribution).
In order to prevent this, a normalized standard deviation of
0.268 has been chosen, since this value assures that none
of the samples of the 5000 trials will exceed the maximum
value of 1.

The details of the 50% loss or median loss L50 and
the 90% loss L90 are shown in Table 2. The 50% loss L50

denotes that 50% of the samples considered in a large sta-
tistical population of fibres following a normal distribution
will have intrinsic coupling losses below such a loss value
(L50). The same applies to the 90% loss L90.

The procedure for the random building of the receiving
fibre on each trial is as follows: firstly, the innermost layer
of the receiving fibre is built in accordance with a certain
radius, circularity deviation and axial eccentricity, all of
them following a normal random distribution, taking as the
mean values those corresponding to the innermost layer
of the transmitting fibre. As for the angle that describes
the orientation of the innermost layer, that is to say, the
angle between the major semi-axis of the layer and the
reference offset direction [57], this is randomly chosen
from a uniform distribution. Its numerical aperture is also
randomly chosen from a normal distribution, independently
of the rest of the parameters. In all cases, when a negative
parameter value has been mathematically generated, the
trial is aborted and a new receiving fibre is built using new
random choices.

Afterwards, the next layers surrounding the innermost
ones are sequentially generated randomly in a similar way,
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Figure 11 (online color at: www.lpr-journal.org) Cumulative

percentage of fibre joints having intrinsic coupling losses below

a given value. Results obtained for simulations of 5000 trials by

using the ray-tracing method.

the mean values now corresponding to their respective lay-
ers of the transmitting fibre. The angles that describe the
orientation of each layer of the receiving fibre are randomly
chosen from a uniform distribution. The same applies to
the polar angles related to the transverse offset direction
between the corresponding layer axes. Special care must
be taken so that only positive parameter values will be ac-
cepted, avoiding overlapping of layers in which an inner
layer radius results to be larger than that of a surrounding
one and assuring that the numerical aperture continually de-
creases towards the exterior. Otherwise, the trial is aborted
and a new receiving fibre is built from the beginning using
new random choices. Although the use of normally distrib-
uted random deviations would in principle make it possible
for absurd parameters to be mathematically generated, the
previous condition prevents this kind of situations from
happening.

We can observe in Fig. 11 that, when considering all
the mismatches taking place simultaneously, the coupling
loss is indeed the highest one. Let us now consider each
of the mismatches separately. As can be seen in Fig. 11
(as well as in the statistical results gathered in Table 2),
the numerical aperture and the core diameter are the most
critical parameters, whereas the axial eccentricity of each
core and cladding and their circular eccentricity are the
least critical ones.
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Eska-Miu fibre TVER fibre

L50 L90 L50 L90

Mismatches all together 0.297 0.63 0.31 0.622

Only radius mismatch 0.106 0.379 0.135 0.353

Only numerical aperture mismatch 0.125 0.405 0.127 0.395

Only circular eccentricity 0.034 0.09 0.041 0.109

Only axial eccentricity 0.093 0.171 0.103 0.165

Table 2 Statistical results obtained for the 50% loss L50

and the 90% loss L90 measured in dB for the Eska-Miu and

TVER fibres by using the ray-tracing method.

Using the information above, we have derived a com-
pact analytical expression that allows us to evaluate in-
trinsic coupling losses in MSI fibres in terms of the most
influential parameters. Our starting point is the total mode
volume, which is a measure of the amount of launched
power carried by bound rays [20]. Let us characterize the
transmitting and receiving fibres by different profiles (ρ1,t,
ρ2,t, . . ., ρN,t, NA1,t, NA2,t, . . ., NAN,t) and (ρ1,r, ρ2,r,
. . ., ρN,r, NA1,r, NA2,r, . . ., NAN,r), respectively. If we
consider a Lambertian light source, the total mode volume
of the transmitting fibre, Vt, can be expressed as [58]

Vt = 2π2
N∑

i=1

ρ2
i,t − ρ2

i−1,t

2
NA2

i,t. (ρ0,t = 0.) (28)

The magnitude of the insertion loss when considering
tolerances to each core surface diameter and each numeri-
cal aperture can be analytically evaluated, if the following
assumptions are made:

– power is uniformly distributed over all modes,
– the transmitting and receiving fibres have the same

number of layers N , and
– the radii of each layer for both transmitting and receiv-

ing fibres satisfy

⎧⎨
⎩

0 � ρ1,r � ρ2,t; i = 1,

ρi−1,t � ρi,r � ρi+1,t; i = 2 . . . N − 1,

ρN−1,t � ρN,r; i = N.

With these requirements, the common mode volume
Vrt, expressed as the fraction of the mode volume of the
transmitting fibre transferred to the receiving fibre, can be
calculated as following [18]

Vrt = 2π2
N∑

i=1

(
min

{
NA2

i−1,p,NA2
i,q

}

× max
{
ρ2

i−1,r, ρ
2
i−1,t

}− min
{
ρ2

i−1,r, ρ
2
i−1,t

}
2

+ min
{
NA2

i,r,NA2
i,t

}
× min

{
ρ2

i,r, ρ
2
i,t

}− max
{
ρ2

i−1,r, ρ
2
i−1,t

}
2

)
,

(29)

where ρ0,r = 0, ρ0,t = 0, NA0,r = 0, NA0,t = 0, and the
following cases must be considered

if ρi−1,t � ρi−1,r

{
p = t

q = r
so that

{
NA2

i−1,p = NA2
i−1,t,

NA2
i,q = NA2

i,r,

if ρi−1,t < ρi−1,r

{
p = r

q = t
so that

{
NA2

i−1,p = NA2
i−1,r,

NA2
i,q = NA2

i,t.

Finally, by substituting Vrt for Eq. (29) and Vt for
Eq. (28), the coupling loss LMSI is calculated as

LMSI = −10 log
Vrt

Vt
. (30)

The third constraint in the assumptions above can be
relaxed, but only at the expense of losing simplicity, since
it would not be possible to obtain a compact analytical ex-
pression to calculate the intrinsic coupling loss any longer.
Nevertheless, this issue can be overcome by implementing
an algorithm that allows computation of Vrt without any re-
striction on the radii of each layer for both transmitting and
receiving MSI fibres. The details concerning this computer
algorithm are given in [18].

In order to establish the validity of the expressions ob-
tained before, several computer simulations have been car-
ried out. These consist in evaluating the intrinsic coupling
losses when only one of the possible structural parameters
is varied (namely, the numerical aperture or the core diame-
ter) and also when the mismatches are applied all together.
Each parameter has a normalized standard deviation of 5%
and it is assumed to follow a normal distribution. We can
adopt two different approaches to the statistical evaluation
of intrinsic coupling losses:

– Applying the same normalized deviation to each wave-
guide parameter on every layer (the intrinsic coupling
loss is obtained by means of Eq. (30) with Vrt calculated
using Eq. (29)).

– Applying a different normalized deviation to each wave-
guide parameter on each layer (the intrinsic coupling
loss is evaluated from Eq. (30) with Vrt calculated from
the computer algorithm of [18]).

We believe that the latter situation describes better than the
former approach the effects of mismatches that in fact may
occur during manufacturing processes.

It is important to keep in mind that a uniform distribu-
tion of energy over all modes constitutes the worst case.
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Table 3 Eska-Miu fibre. Statistical results obtained for the 50%

loss L50 and the 90% loss L90 measured in dB by using the

analytical expressions and the ray-tracing method.

Results obtained using the same normalized deviations
on every layer

Analytical Ray-tracing

L50 L90 L50 L90

Mismatches all together 0.248 0.862 0.235 0.837

Only radius mismatch 0.0 0.575 0.003 0.562

Only numerical aperture mismatch 0.003 0.579 0.0 0.536

Results obtained using different normalized deviations
on each layer

Analytical Ray-tracing

L50 L90 L50 L90

Mismatches all together 0.276 0.64 0.263 0.617

Only radius mismatch 0.109 0.382 0.107 0.373

Only numerical aperture mismatch 0.125 0.423 0.114 0.401

Therefore, it is expected that coupling losses obtained un-
der more realistic conditions (such as in the case of having
restricted launching conditions or when including the mod-
ifications induced in the light power distribution by mode
mixing) will never be higher than the limit values given by
the analytical expressions.

In order to check whether the results obtained from
the analytical expressions and from the ray-tracing method
are comparable or not, we have plotted on Figs. 12 and 13
the results obtained for the intrinsic coupling loss when
only one of the parameters is varied and also when the
mismatches are applied all together, both for the Eska-Miu
and the TVER MSI-POFs. The details of the 50% loss L50,
or median loss, and the 90% loss L90 for each type of fibre
are shown in Tables 3 and 4.

It can be observed that the results obtained using the
analytical expressions are in excellent agreement with those
obtained using the ray-tracing method save the obvious
minimal statistical fluctuations (the slight variations in the
results are solely due to the statistical nature of the set of
measurements carried out in the computer simulations).
Furthermore, this coincidence happens for both MSI-POFs
regardless of whether we use or not the same normalized
deviation for each waveguide parameter on every layer.

Let us now compare the results obtained for the two
approaches considered. Tables 3 and 4 show that the 90%
loss L90 obtained when using different normalized devi-
ations on each layer is certainly lower than the 90% loss
obtained for the same normalized deviations on every layer,
whereas the behaviour of the 50% loss L50 is just the oppo-
site. This effect is especially noticeable if we consider the
mismatches all together.

In order to understand the reason for having such a
behaviour, we have to analyse how the random deviations

Table 4 TVER fibre. Statistical results obtained for the 50%

loss L50 and the 90% loss L90 measured in dB by using the

analytical expressions and the ray-tracing method.

Results obtained using the same normalized deviations
on every layer

Analytical Ray-tracing

L50 L90 L50 L90

Mismatches all together 0.244 0.871 0.243 0.849

Only radius mismatch 0.0 0.577 0.001 0.559

Only numerical aperture mismatch 0.0 0.576 0.0 0.559

Results obtained using different normalized deviations
on each layer

Analytical Ray-tracing

L50 L90 L50 L90

Mismatches all together 0.302 0.624 0.295 0.608

Only radius mismatch 0.146 0.357 0.141 0.347

Only numerical aperture mismatch 0.13 0.406 0.127 0.398

are applied in each of the approaches. In both cases, we
have the same probabilities of coming across a positive
or negative random deviation. A negative one (meaning
that the receiving fibre has a lower numerical aperture or
a smaller core diameter) produces some loss, whereas a
positive one leads to no loss at all.

If we consider the approach in which the same normal-
ized deviation is applied to each waveguide parameter on
every layer, a negative normalized deviation always affects
negatively the rest of the layers. In contrast, in the case of
the approach in which a different normalized deviation is
applied to each waveguide parameter on each layer, the fact
that a negative deviation has occurred on a certain layer
does not imply that the same will happen on the rest of the
layers. For this reason, it is expected that the 90% loss L90

obtained for the latter approach will be more optimistic
than that for the former one.

A similar reasoning applies to the median loss L50,
since a positive random deviation (its probability being
the same as that of a negative one) obtained for a certain
waveguide parameter will have a more positive effect (for
the population of fibre joints having losses below L50)
when the deviation is applied to every layer of the fibre,
and a more negative effect when entirely different random
deviations are applied.

4. Bandwidth analysis

In this section we present a numerical analysis of the pulse
dispersion and bandwidth in MSI fibres under different light
source configurations. For this purpose, the computational
model we have developed assumes that mode coupling is
absent and neglects the effects of material dispersion, which
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(b) Ray-tracing results obtained using the same normal-

ized deviations on every layer.

0.00 0.25 0.50 0.75 1.00 1.25 1.50
0.0

12.5

25.0

37.5

50.0

62.5

75.0

87.5

100.0

 Mismatches all together

 Only radius mismatch

 Only numerical aperture mismatch

C
u

m
u

la
ti

v
e 

(%
)

Coupling loss (dB)

(c) Analytical results obtained using different normalized

deviations on each layer.
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(d) Ray-tracing results obtained using different normal-

ized deviations on each layer.

Figure 12 (online color at: www.lpr-journal.org) Eska-Miu fibre. Cumulative percentage of fibre joints having intrinsic coupling

losses below a given value.

is overridden by intermodal dispersion due to the high
numerical aperture of these fibres. Additionally, we study
the influence of tunnelling rays on pulse propagation, which
in some cases can be strong enough to cause a significant
decrease in fibre bandwidth.

4.1. Description of the computational model

Our computational model relies on the calculation of the
ray trajectories inside an MSI fibre by using the ray in-

variants β̃ and l̃ defined in Eqs. (3) and (4), respectively.

From the knowledge of the ray transit time t(β̃, l̃) given by
Eq. (12), the computational model is able to calculate the
time distribution of power at any distance z along the fibre
for any launching condition, i.e. the fibre impulse response
Q(t) [20, 59–62].

Following a similar procedure as that stated in [59], the
power launched by a certain source at the input surface

of the fibre is properly mapped onto the β̃-l̃ plane, that
is to say we assign each of the launched rays the proper

value (β̃ray, l̃ray) with power ΔPray according to the dis-

tribution of the excited power density in the β̃-l̃ plane.

By calculating the transit time t(β̃ray, l̃ray) for each ray,
and by dividing the interval of ray arrival times into NT

time slots, the model constructs a discretized version of
the impulse response Qi ≡ Q(ti) by assigning ΔPray (i.e.
Qi = Qi + ΔPray) to the ith time slot given by

ti � t(β̃ray, l̃ray) � ti+1. (31)

Let us define Rm as the mth moment of the impulse
response [20, 63, 64]

Rm =
∫ tmax

tmin

tmQ(t)dt (32)

=

(
1
2
tm1 Q1 +

NT −1∑
i=2

tmi Qi +
1
2
tmNT

QNT

)
tNT

− t1
NT

,

where tNT
≡ tmax and t1 ≡ tmin are the transit times

corresponding to the slowest and fastest propagating rays,
respectively, and we use the extended trapezoidal rule to
perform the integration above [41, 65].
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(a) Analytical results obtained using the same normalized

deviations on every layer.
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(b) Ray-tracing results obtained using the same normal-

ized deviations on every layer.
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(c) Analytical results obtained using different normalized

deviations on each layer.
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(d) Ray-tracing results obtained using different normal-

ized deviations on each layer.

Figure 13 (online color at: www.lpr-journal.org) TVER fibre. Cumulative percentage of fibre joints having intrinsic coupling losses

below a given value.

The mean transit time of the impulse response is then
calculated by

t̄ =

∫ tmax

tmin

tQ(t)dt∫ tmax

tmin

Q(t)dt

=
R1

R0
, (33)

and the root-mean-square (rms) pulse width, which contains
information about the power distribution and the width of
the pulse [63, 66], is given by

σ =

⎡
⎢⎢⎢⎣
∫ tmax

tmin

(t − t̄)2 Q(t)dt∫ tmax

tmin

Q(t)dt

⎤
⎥⎥⎥⎦

1/2

=

[
R2

R0
−

(
R1

R0

)2
]1/2

. (34)

The frequency response of the fibre is obtained by com-
puting the discrete Fourier transform of the discretized im-
pulse response. More specifically, this is accomplished by
implementing the fast Fourier transform (FFT) [65, 67, 68].

Finally, the fibre bandwidth is obtained from the frequency
at half-maximum of the frequency response. Such a method
leads to more accurate results than calculating the fibre
bandwidth from the inverse of the rms pulse width (σ)
assuming that the impulse response is Gaussian [69, 70].

The reader is again cautioned that the numerical re-
sults obtained from the computer simulations correspond
only to ideal fibres, whereas in real fibres intrinsic physi-
cal phenomena can give rise to many different effects that
can have an influence on the fibre transmission characteris-
tics [52,71–74]. It turns out that in real fibres there is always
a certain amount of mode coupling which tends to increase
the bandwidth and leads to a square-root dependence of the
bandwidth on the fibre length, instead of the expected linear
dependence without mode coupling [51, 69, 75–77]. In this
sense, the numerical predictions can be regarded as a lower
bound for the fibre bandwidth expected in practice [70].

4.2. Measurement of the impulse response and
the fibre bandwidth

In order to accurately predict the fibre bandwidth, it is nec-
essary to know the real numerical apertures of the fibres
(the bandwidth increases when the fibre numerical aperture
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decreases). Nevertheless, the selection of any value for the
fibre numerical aperture does not change the shape of the
impulse response, since this one mainly depends on the
refractive index profile rather than on the value of the fibre
numerical aperture. In our calculations we have taken the
typical characteristics of PMMA-based POFs with the high-
est possible fibre numerical aperture, so that the Eska-Miu
and TVER MSI-POFs exhibit a peak numerical aperture
(NAf ) of 0.51 (which is the worst case) [4]. Notice that, be-
cause of this high numerical aperture, we can safely neglect
the effects of chromatic dispersion on fibre bandwidth [20].

We have employed a Lambertian source of radius rs

covering the whole input surface of the fibres and emitting
light in all directions, i.e. with a source numerical aperture
NAs = 1.0. We have taken a straight section of 100 m in
every case.

Fig. 14 shows the impulse response of the MSI-POFs
considered above. The details of the rms pulse width (σ)
and the fibre bandwidth (BW ) are shown in Table 5.

It is clear from Table 5 that the influence of tunnelling
rays on fibre bandwidth is slightly stronger in the case of
the Eska-Miu fibre than in the case of the TVER one (the
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(a) Eska-Miu fibre.
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(b) TVER fibre.

Figure 14 (online color at: www.lpr-journal.org) Impulse re-

sponse Q(t) for the investigated MSI-POFs (the impulse re-

sponses are normalized so that they have unit total power).

Table 5 Results obtained for the rms pulse width (σ) measured

in ns and for the fibre bandwidth (BW ) measured in MHz for the

Eska-Miu and TVER MSI-POFs.

Only bound
rays

Tunnelling and
bound rays

σ BW σ BW

Eska-Miu fibre 6.76 29.4 9.57 25.02

TVER fibre 8.38 26.45 9.19 24.41

bandwidth reduction due to tunnelling rays is in the order
of 15% in the Eska-Miu fibre and of 8% in the TVER one).
This is consistent with the fact that there are relatively more
tunnelling rays in the Eska-Miu fibre than in the TVER one,

because the region of tunnelling rays on the β̃-l̃ plane is
wider in the former case than in the latter. Therefore, it is
expected that, in general, their effect on bandwidth will be
slightly greater in the Eska-Miu fibre than in the TVER one.

In view of the obtained results, both MSI-POFs exhibit
higher bandwidths than an SI-POF of similar characteristics
(we would achieve ≈ 18 MHz if we used an SI fibre), but
they are much lower than in the case of a clad-parabolic-
profile GI-POF (with a bandwidth of several hundreds of
MHz in 100 m).

Next, we will analyse the fibre bandwidth against dif-
ferent source parameters while maintaining the rest of the
parameters fixed, for the Eska-Miu and TVER MSI-POFs.

The different source configurations considered in this
study are:

– the source numerical aperture NAs in the interval
[0.1, 1.0],

– the source radius rs/ρN in the interval [0.1, 1.0], and
– the offset of launch position Offset/ρN in the interval

[0.0, 1.0].

We have plotted the obtained results on Figs. 15 and 16.
The step size for each set of measurements has been ad-
justed so that we have 100 samples in each figure. For
the sake of clarity, only part of the line-symbols have
been drawn.

From direct comparison between the aforementioned
figures, it can be concluded that, in both MSI-POFs, a sig-
nificant bandwidth improvement (a twenty-fold increase)
can be obtained by reducing both the source numerical
aperture (NAs) and its normalized radius (rs/ρN ) to the
common value of 0.1. Even though the effective solid accep-
tance angle of the fibre is sufficiently high to accept more
tilted rays (due to its high numerical aperture), the rays
launched under these conditions do not fill this effective
solid acceptance angle. This fact leads to a reduction of the
intermodal dispersion (i.e. the fibre bandwidth increases).

As for tunnelling rays, their effect is to decrease the
fibre bandwidth, especially when large-diameter sources
are involved, as is evident from Fig. 15.

The fact that the core of MSI fibres consists of several
layers of different refractive indices has a strong effect
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(a) Eska-Miu fibre: only bound rays.
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(b) Eska-Miu fibre: bound and tunnelling rays.
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(c) TVER fibre: only bound rays.
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(d) TVER fibre: bound and tunnelling rays.

Figure 15 (online color at: www.lpr-journal.org) Fibre bandwidth against offset of launch position for various source radii.

on fibre bandwidth. For example, it can be observed from
Fig. 15 that, if we consider small sources (say, rs/ρN =
0.1), the transit times for bound rays will depend strongly
on the position of the light source relative to the core centre
(Offset/ρN ). To put it another way, these transit times (and,
consequently, the bandwidth) depend on the layer of the
fibre on which these rays are launched (compare the degree
of variability in the bandwidth when rs/ρN = 0.1 with the
results obtained when rs/ρN = 1.0).

It is particularly interesting to note that the inflexion
points, maxima and minima in the bandwidth curves for
rs/ρN = 0.1 correspond to those positions of the light
source for which it starts or ceases to cover part of another
layer of the fibre. For instance, in the case of the TVER
fibre, it can be seen in both Figs. 15(c) and 15(d) that, from
the offset of launch position Offset/ρN = 0.92, the band-
width starts to decrease again after having increased in the
interval [0.82, 0.92]. It turns out that 0.82 is the normalized
radial limit between the third layer and the outermost one,
i.e. ρ3/ρN = 0.82 (refer back to Table 1 for further details),
and also that the source only covers the outermost layer

from the limit value of Offset/ρN = 0.92. However, in the
case of the Eska-Miu fibre (see Figs. 15(a) and 15(b)), we
have that the limit between the second layer and the out-
ermost one is ρ2/ρN = 0.92, so the light source will still
cover part of the second layer in addition to the outermost
one, even if the offset of launch position is maximum (i.e.
Offset/ρN = 1.0) and, therefore, we will not be able to
observe the same effects as with the TVER fibre.

In view of the previous facts, it is clear that the fibre
bandwidth depends strongly on the fibre refractive index
profile. This explains the differences observed in the results
obtained for the Eska-Miu fibre and the TVER one.

Another interesting effect of the multilayered refractive
index profile inherent to these fibres can be observed in
Fig. 16, which shows the change in fibre bandwidth with
the source numerical aperture for different source radii.

It is clear that the high bandwidth attainable with low
values of NAs is rapidly neutralized if the source covers
additional layers. In the case of the Eska-Miu fibre (see
Figs. 16(a) and 16(b)), we can observe that the highest band-
widths are obtained for small sources with rs/ρN = 0.1
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(a) Eska-Miu fibre: only bound rays.
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(b) Eska-Miu fibre: bound and tunnelling rays.
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(c) TVER fibre: only bound rays.
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(d) TVER fibre: bound and tunnelling rays.

Figure 16 (online color at: www.lpr-journal.org) Fibre bandwidth against source numerical aperture for various source radii. The

insets show a magnified view of the fibre bandwidth.

and 0.6 (i.e. when the source only covers the first layer
considered here, since the radial limit value between the
first and second layers is ρ1/ρN = 0.66), whereas for
rs/ρN = 0.8 and 1.0 this bandwidth improvement is grad-
ually spoilt. In the case of the TVER fibre, this limit value is
lower (ρ1/ρN = 0.48) and, as a consequence, we achieve
these higher bandwidths only for rs/ρN = 0.1, as can be
deduced from Figs. 16(c) and 16(d). It turns out that the
refractive index profile of MSI fibres plays a key role in
this bandwidth worsening. When we cover the whole input
surface of the fibre, even if we employ a restricted launch-
ing condition (namely, if NAs is kept low), the rays excited
on the innermost and outermost layers have very different
transit times due to the difference in the refractive indices.
This leads to an increase in the intermodal dispersion and,
therefore, the fibre bandwidth reduces.

On the other hand, we can observe fluctuations or rip-
ples in the fibre bandwidth that depend on the fibre refrac-
tive index profile when small sources are employed (the
insets in Fig. 16 provide a clearer view of the variations).

For instance, if we consider the case of rs/ρN = 0.1, the
tendency of the fibre bandwidth is to decrease as NAs in-
creases, since then more tilted rays are launched into the
first layer and, consequently, the intermodal dispersion is
higher. When a certain value of NAs is exceeded (0.3 in
the case of the Eska-Miu fibre and 0.33 in the case of the
TVER one), the more tilted rays now pass to the second
layer. These rays propagate faster in this layer because of
its lower refractive index, which tends to equalize and even
reduce the intermodal dispersion. For example, in the case
of the Eska-Miu fibre, the decrease in the bandwidth is
gradually compensated in the interval [0.3, 0.32] (in the
case of the TVER fibre in the interval [0.33, 0.36]), and
even improved in the interval [0.32, 0.36] (in the case of
the TVER fibre in the interval [0.36, 0.42]). Nevertheless,
if even more tilted rays are launched the fibre bandwidth
tends to worsen again, since then the boost experienced
by the rays propagating within the second layer does not
compensate the extra length that they must travel. Such a
worsening continues until rays can pass to the third layer,
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which occurs for values of NAs exceeding the limit 0.45 in
the case of the Eska-Miu fibre (with a slight improvement
in the interval [0.45, 0.47]), and the limit 0.44 in the case of
the TVER one (the improvement taking place in the interval
[0.45, 0.5] instead). When NAs increases further, the same
phenomenon occurs again until rays are able to reach the
outermost layer, even though the ripples observed in the
fibre bandwidth tend to decrease as ray propagation takes
place within more layers.

5. Conclusions

In this review we have carried out an extensive analysis of
light propagation properties in MSI fibres based on classical
geometric optics. After having derived the ray invariants,
which allow us to determine exactly the ray trajectories
inside these fibres, we have classified rays into bound, re-
fracting and tunnelling categories. We have obtained a sin-
gle theoretical expression for the calculation of the power
transmission coefficient of tunnelling and refracting rays
in MSI fibres. Tunnelling rays have a strong influence on
the performance of MSI fibres, which depends on the fibre
refractive index profile.

We have also obtained analytical expressions that allow
us to calculate both the extrinsic and intrinsic coupling
losses in MSI fibres. In all cases, the formulae were derived
on the assumption that the power distribution is uniform
across the light cone of radiation defined by the input nu-
merical aperture. For this reason, the analytical calculations
performed overestimate the attenuation, providing an up-
per bound for coupling losses. This property ensures that
measurements obtained in practice will always be well be-
low these limit values. As for extrinsic coupling losses, the
results yielded by the numerical computer simulations have
revealed that the transverse offset is the most critical pa-
rameter. Concerning intrinsic coupling losses, reducing the
variations in the numerical aperture and the core diameter
helps to minimize these losses.

Additionally, we have carried out a numerical analysis
of the pulse dispersion and bandwidth in MSI fibres under
different light source configurations, taking into account
the influence of tunnelling rays. The obtained results have
revealed, on the one hand, variations in fibre bandwidth as
a direct consequence of the multilayered refractive index
profile inherent to these fibres, and, on the other hand, a
higher sensitivity of the fibre bandwidth to the offset of
launch position when the source is made smaller.
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