LCT at the University of Malta (Malta)
General details of the subject
- Mode
- Face-to-face degree course
- Language
- English
Description and contextualization of the subject
El estudiante realiza un primer curso completo en la misma.Competencies
Name | Weight |
---|
Conocimiento de las tecnologías del lenguaje basado en conocimiento lingüístico y estadístico. | 100.0
%
|
Study types
Type | Face-to-face hours | Non face-to-face hours | Total hours |
---|
Lecture-based | 200 | 300 | 500 |
Applied computer-based groups | 400 | 600 | 1000 |
Training activities
Name | Hours | Percentage of classroom teaching |
---|
Analysing and discussing papers | 250.0 | 80
%
|
Lectures | 500.0 | 40
%
|
Prácticas con ordenador, laboratorio, salidas de campo, visitas externas | 500.0 | 60
%
|
Seminars | 250.0 | 80
%
|
Assessment systems
Name | Minimum weighting | Maximum weighting |
---|
Drawing up reports and presentations | 25.0
%
| 25.0
%
|
Practical tasks | 25.0
%
| 25.0
%
|
Written examination | 50.0
%
| 50.0
%
|
Learning outcomes of the subject
* Tener conocimientos básicos de teorías sintácticas y semánticas* Ser capaz de evaluar la importancia de las teorías sintácticas y semánticas para el PLN* Ser capaz de procesar, visualizar e interpretar datos del lenguaje cuantitativos extraídos del corpus a través de interfaces web* Ser capaz de evaluar la importancia de los datos extraídos del corpus para estudios teóricos y de lingüística aplicada* Tener conocimiento de los formalismos y estándares de anotación usados para analizar y anotar texto a nivel léxico, sintáctico, semántico y a nivel del discurso* Ser capaz de aplicar estos estándares a nuevos datos, de evaluar los resultados y de usar y desarrollar métodos para su anotación automáticaTemary
1. Foundational: Statistical methods; symbolic methods; cognition; corpus; text and speech; foundations of linguistics2. Computational Syntax and Morphology: Finite state techniques; probabilistic approaches; formal grammars; tagging, chunking; parsing.3. Computational Semantics, Pragmatics and Discourse. Syntax-semantics interface; semantic construction; dialogue; ontologies; formal semantics.4. Data Structures, Data Organization and Processing: Algebraic data-types; relational databases; semi-structured data and XML; information retrieval; digital libraries.5. Logic, Computability and Complexity: Logic and inference; automata theory; computability theory; complexity theory; discrete mathematics6. Formal Languages and Algorithms: Formal grammars and languages hierarchy; parsing and compiler design; search techniques and constraint resolution; automated learning.7. Advanced Language Technologies. Machine translation; information and knowledge representation; information retrieval; question answering; speech recognition and generation; models of human language processing and understanding; psycholinguistics.8. Advance Computer Science: Artificial intelligence; knowledge representation; automated reasoning; semantic web; intelligent and multi-modal interfaces; cognitive modelling; computational psychology; neural networks; machine learning.