Subject

XSL Content

LCT at the University of Malta (Malta)

General details of the subject

Mode
Face-to-face degree course
Language
English

Description and contextualization of the subject

El estudiante realiza un primer curso completo en la misma.

Competencies

NameWeight
Conocimiento de las tecnologías del lenguaje basado en conocimiento lingüístico y estadístico.100.0 %

Study types

TypeFace-to-face hoursNon face-to-face hoursTotal hours
Lecture-based200300500
Applied computer-based groups4006001000

Training activities

NameHoursPercentage of classroom teaching
Analysing and discussing papers250.080 %
Lectures500.040 %
Prácticas con ordenador, laboratorio, salidas de campo, visitas externas500.060 %
Seminars250.080 %

Assessment systems

NameMinimum weightingMaximum weighting
Drawing up reports and presentations25.0 % 25.0 %
Practical tasks25.0 % 25.0 %
Written examination50.0 % 50.0 %

Learning outcomes of the subject

* Tener conocimientos básicos de teorías sintácticas y semánticas* Ser capaz de evaluar la importancia de las teorías sintácticas y semánticas para el PLN* Ser capaz de procesar, visualizar e interpretar datos del lenguaje cuantitativos extraídos del corpus a través de interfaces web* Ser capaz de evaluar la importancia de los datos extraídos del corpus para estudios teóricos y de lingüística aplicada* Tener conocimiento de los formalismos y estándares de anotación usados para analizar y anotar texto a nivel léxico, sintáctico, semántico y a nivel del discurso* Ser capaz de aplicar estos estándares a nuevos datos, de evaluar los resultados y de usar y desarrollar métodos para su anotación automática

Temary

1. Foundational: Statistical methods; symbolic methods; cognition; corpus; text and speech; foundations of linguistics2. Computational Syntax and Morphology: Finite state techniques; probabilistic approaches; formal grammars; tagging, chunking; parsing.3. Computational Semantics, Pragmatics and Discourse. Syntax-semantics interface; semantic construction; dialogue; ontologies; formal semantics.4. Data Structures, Data Organization and Processing: Algebraic data-types; relational databases; semi-structured data and XML; information retrieval; digital libraries.5. Logic, Computability and Complexity: Logic and inference; automata theory; computability theory; complexity theory; discrete mathematics6. Formal Languages and Algorithms: Formal grammars and languages hierarchy; parsing and compiler design; search techniques and constraint resolution; automated learning.7. Advanced Language Technologies. Machine translation; information and knowledge representation; information retrieval; question answering; speech recognition and generation; models of human language processing and understanding; psycholinguistics.8. Advance Computer Science: Artificial intelligence; knowledge representation; automated reasoning; semantic web; intelligent and multi-modal interfaces; cognitive modelling; computational psychology; neural networks; machine learning.