Multi-Objective Genetic Algorithm for Optimizing an ELM-Based Driver Distraction Detection System

Multi-Objective Genetic Algorithm for Optimizing an ELM-Based Driver Distraction Detection System

Autoría:
J. Echanobe; K. Basterretxea; I. del Campo; V. Martínez; N. Vidal
Año:
2022
Revista:
IEEE Transactions on Intelligent Transportation Systems
Volumen:
23 (8)
Página de inicio - Página de fin:
11946 - 11959
ISBN/ISSN:
1524-9050
DOI:
10.1109/TITS.2021.3108851

"An eco-driving approach for ride comfort improvement"

An eco-driving approach for ride comfort improvement

Autoría:
O. Mata-Carballeira, I. del Campo, E. Asua
Año:
2022
Revista:
IET INTELLIGENT TRANSPORT SYSTEMS
Volumen:
16(2)
Página de inicio - Página de fin:
186 - 205

Publicaciones

An FPGA-Based Neuro-Fuzzy Sensor for Personalized Driving Assistance

Autoría:
Óscar Mata-Carballeira, Jon Gutiérrez-Zaballa, Inés del Campo, Victoria Martínez
Año:
2019
Revista:
Sensors
Factor de impacto:
3,031
Cuartil:
Q1
Ciudad de edición y/o Editorial:
Basilea, Suiza
Volumen:
19(18)
DOI:
https://doi.org/10.3390/s19184011
Descripción:

Advanced driving-assistance systems (ADAS) are intended to automatize driver tasks, as well as improve driving and vehicle safety. This work proposes an intelligent neuro-fuzzy sensor for driving style (DS) recognition, suitable for ADAS enhancement. The development of the driving style intelligent sensor uses naturalistic driving data from the SHRP2 study, which includes data from a CAN bus, inertial measurement unit, and front radar. The system has been successfully implemented using a field-programmable gate array (FPGA) device of the Xilinx Zynq programmable system-on-chip (PSoC). It can mimic the typical timing parameters of a group of drivers as well as tune these typical parameters to model individual DSs. The neuro-fuzzy intelligent sensor provides high-speed real-time active ADAS implementation and is able to personalize its behavior into safe margins without driver intervention. In particular, the personalization procedure of the time headway (THW) parameter for an ACC in steady car following was developed, achieving a performance of 0.53 microseconds. This performance fulfilled the requirements of cutting-edge active ADAS specifications.

Más información