Los niosomas, eficientes vehículos de ADN para terapia génica del sistema nervioso central

El grupo NanoBioCel de la UPV/EHU desarrolla unas vesículas lipídicas que han demostrado transferir material genético de forma eficiente y viable

  • Ikerketa

Date de première publication: 03/12/2018

En una investigación llevada a cabo en colaboración, el grupo NanoBioCel de la Facultad de Farmacia de la UPV/EHU y la Universidad de Elche han diseñado unos niosomas, unas vesículas lipídicas, con la finalidad de utilizarlas en terapias génicas para el tratamiento de enfermedades del sistema nervioso central. Una de las novedades de estas vesículas es que han utilizado como elemento el licopeno, lo que ha permitido mejorar la transfección en las células del cerebro.

Gustavo Puras. Foto: Nuria González. UPV/EHU.

La terapia génica es una técnica que se encuentra en plena expansión y desarrollo, por el enorme potencial que tiene para fines terapéuticos. Consiste, básicamente, en introducir material genético en las células diana, para introducir una nueva función, restablecer una función defectuosa o interferir con una función ya existente. Pero una de las principales dificultades que presenta es “conseguir vehiculizar ese material genético nuevo a la célula. En el caso del sistema nervioso, esa transfección es especialmente complicada, debido, entre otros factores, a las barreras físicas que tiene el cerebro y que deben ser superadas”, explica Gustavo Puras, miembro del grupo NanoBioCel de la Facultad de Farmacia de la UPV/EHU y uno de los autores del estudio.

Este grupo de investigación eligió para su estudio un tipo de vectores no-virales, los niosomas. “Son unas partículas lipídicas, unas vesículas, formadas por tres componentes: un lípido catiónico, que es el responsable de unirse al ADN que se quiere transfectar; otro lípido auxiliar, que favorece la entrada al núcleo a través de la membrana y evita la degradación del niosoma por parte de los lisosomas celulares, y un tensioactivo no iónico, que estabiliza la emulsión que se emplea en el manejo de estas partículas”, añade el doctor Puras.

El estudio tuvo diferentes fases. En la primera, lo que hicieron fue seleccionar los tres componentes con los que diseñar la propia partícula del niosoma. La parte novedosa de este estudio, tal como relata Puras, fue que “utilizamos como lípido auxiliar el licopeno, el pigmento que da color a los tomates, que es conocido por tener propiedades para el tratamiento contra el cáncer y enfermedades cardiovasculares, pero no se había estudiado su posible rol en terapia génica”. Después, unieron al niosoma un plásmido, un gen, que en su caso fue el gen de la proteína verde fluorescente. “No es un plásmido terapéutico, pero nos sirvió para saber si las células eran transfectadas o no, porque en caso afirmativo emitirían fluorescencia verde”.

Una vez conseguido el complejo niosoma-plásmido, y realizada la caracterización físico-química, hicieron pruebas in vitro, con modelos de células neuronales, para ver la tasa de transfección, es decir, el porcentaje de células verdes fluorescentes conseguido, y la viabilidad de estas células transfectadas. “Lo que vimos fue que la incorporación del licopeno a la formulación mejoró la transfección de estas neuronas”.

 

Transfección de células gliales, no de neuronas

En una última fase, “la más interesante”, realizaron pruebas in vivo, inyectando en el cráneo de ratas ese preparado. Lo que pudieron ver en esta fase fue que las principales células que se transfectaron “no fueron neuronas, sino células gliales y células de las paredes de los vasos sanguíneos. No son neuronas, pero también son importantes, y se dividen más; por eso las hemos conseguido transfectar en mayor proporción”.

El investigador se muestra “muy satisfecho” con los resultados obtenidos: “Lo que buscábamos era conseguir transfectar células del sistema nervioso central, y lo hemos conseguido. En un paso posterior, el gen que transfectemos no será el de la proteína verde fluorescente, sino alguna proteína que produce agentes bioactivos, o agentes que favorezcan la revascularización. Las células que resultaron transfectadas en mayor medida, las células gliales, son muy abundantes en el sistema nervioso central, y juegan un papel crucial en el correcto desarrollo y funcionamiento del tejido nervioso. Además, su alteración está asociada con numerosos desórdenes neurológicos, como los derrames cerebrales, la esclerosis múltiple, la epilepsia, el alzhéimer y el párkinson”.

Estos resultados, por tanto, les permite seguir avanzando en la investigación. Además de evaluar el efecto que puedan tener diferentes plásmidos terapéuticos, el investigador considera que existe margen de mejora tanto en la transfección, como en la viabilidad de las células; también se puede estudiar la duración de la expresión de la proteína transfectada. “Se abren muchas posibilidades”, concluye.

Référence bibliographique