Subject

XSL Content

Computational fluid dynamics for turbulent flows

General details of the subject

Mode
Face-to-face degree course
Language
English

Description and contextualization of the subject

In the framework of renewable energies, the study of the effects of fluid dynamics is crucial for the efficiency and performance when designing a device for energy extraction. The course covers the fundamentals of the theory and numerical simulation of fluid flow, encompassing turbulence effects . The mesh generation process, including goal-oriented adaptive mesh refinement, will also be tackled, since it is an essential and time-consuming component in the design process. Meshless methods will be also discussed.



The students will learn the fundamentals concepts and mathematical background of computational fluid dynamics (CFD). They will learn to set-up numerical simulations for fluid dynamics applications through practical hands-on sessions. They will be able to select the suitable numerical set-up for the different flow conditions. The basic knowledge will be provided for post-processing and evaluating the results in terms of numerical reliability, forces and performance of a designed geometry.



Teaching staff

NameInstitutionCategoryDoctorTeaching profileAreaE-mail
GARCIA DE BERISTAIN, IMANOLUniversity of the Basque CountryDoctorBilingualApplied Mathematicsimanol.garciad@ehu.eus
ELLERO , MARCOBCAM Basque Center for Applied Mathematics and IkerbasqueOtrosDoctormellero@bcamath.org

Competencies

NameWeight
Ability to learn the fundamental fluid dynamics equations, their derivation and physical interpretation25.0 %
Ability to tackle the solution of a practical problem in aerodynamics, by the use of suitable numerical approximation25.0 %
Ability to handle and understand the basics of the development of a computer program for solving the equations of fluid dynamics25.0 %
Ability to produce concise and clear report on the home assignments and to orally discuss it25.0 %

Study types

TypeFace-to-face hoursNon face-to-face hoursTotal hours
Lecture-based183553
Applied computer-based groups121022

Training activities

NameHoursPercentage of classroom teaching
Computer practicals0.00 %
Expositive classes18.0100 %
Individual study10.00 %
Lectures18.0100 %
Student's personal work10.00 %
Systematised study35.00 %
Theory0.00 %
Working with it equipment12.0100 %

Assessment systems

NameMinimum weightingMaximum weighting
Drawing up reports and presentations30.0 % 50.0 %
Written examination50.0 % 70.0 %

Learning outcomes of the subject

Ability to learn the fundamental fluid dynamics equations, their derivation and physical interpretation.

Ability to tackle the solution of a practical problem in fluiddynamics, by the use of suitable numerical approximation.

Ability to handle and understand the basics of the development of a computer program for solving the equations of fluid dynamics.

Ability to produce concise and clear report on the home assignments and to orally discuss it.

Ordinary call: orientations and renunciation

La calificación del alumno en la asignatura se determinará mediante la revisión y valoración de las tareas de evaluación propuestas a lo largo del curso. La modalidad de las tareas evaluables consiste en:



- la resolución de ejercicios,

- el desarrollo de código informático que resuelva los problemas planteados,

- un informe escrito consistente en la descripción, análisis y conclusiones obtenidas en la resolución de los ejercicios y en la programación del código informático y su implementación para la resolución de los casos propuestos.



Las tareas evaluables deben enviarse al enlace correspondiente de la plataforma egela/moodle dentro del plazo anunciado.



Extraordinary call: orientations and renunciation

Los criterios de evaluación en la convocatoria extraordinaria serán los mismos que en la convocatoria ordinaria.

Temary

1. Introduction to Conservation Laws in Fluid Mechanics.

2. Viscous approximation and Navier-Stokes equations.

3. Finite Differences discretization method.

4. Finite Differences (exercises: advection-diffusion equation).

5. Finite Volumes method (openFoam)

6. Finite Volumes (exercises).

7. Turbulence modelling.

8. Finite Elements method (Galerkin formulation).

9. Finite Elements (exercises: FEniCS).

10. Lagrangian methods: Smoothed Particle Hydrodynamics and Vortex Methods.

Bibliography

Compulsory materials

Apuntes teóricos, ejemplos, ejerccicios y código informático accesible desde la plataforma egela/moodle, https://egela.ehu.eus



Basic bibliography

1. Ferzinger&Peric, Computational Methods for Fluid Dynamics, Springer



2. Pope, Turbulent Flows, Cambridge Press.



1. Textbook: Blazek, J., Computational Fluid Dynamics: Principles and Applications, 3rd Edition, Butterworth-Heinemann, 2015.

XSL Content

Suggestions and requests