Gaia

Datuen esplorazioa eta analisia

Gaiari buruzko datu orokorrak

Modalitatea
Ikasgelakoa
Birtuala
Hizkuntza
Gaztelania

Irakasleak

IzenaErakundeaKategoriaDoktoreaIrakaskuntza-profilaArloaHelbide elektronikoa
ARBELAIZ GALLEGO, OLATZEuskal Herriko UnibertsitateaIrakaslego AgregatuaDoktoreaElebidunaKonputagailuen Arkitektura eta Teknologiaolatz.arbelaitz@ehu.eus
GURRUTXAGA GOIKOETXEA, IBAIEuskal Herriko UnibertsitateaIrakaslego AgregatuaDoktoreaElebidunaKonputagailuen Arkitektura eta Teknologiai.gurrutxaga@ehu.eus
INZA CANO, IÑAKIEuskal Herriko UnibertsitateaIrakaslego AgregatuaDoktoreaElebidunaKonputazio Zientzia eta Adimen Artifizialainaki.inza@ehu.eus
IRIGOYEN GARBIZU, ITZIAREuskal Herriko UnibertsitateaIrakaslego AgregatuaDoktoreaElebidunaKonputazio Zientzia eta Adimen Artifizialaitziar.irigoien@ehu.eus
MARTIN ARAMBURU, JOSE IGNACIOEuskal Herriko UnibertsitateaUnibertsitateko Irakaslego TitularraDoktoreaElebidunaKonputagailuen Arkitektura eta Teknologiaj.martin@ehu.eus
MUGUERZA RIVERO, JAVIER FRANCISCOEuskal Herriko UnibertsitateaUnibertsitateko KatedradunaDoktoreaElebidunaKonputagailuen Arkitektura eta Teknologiaj.muguerza@ehu.eus
PEREZ DE LA FUENTE, JESUS MARIAEuskal Herriko UnibertsitateaIrakaslego AgregatuaDoktoreaElebidunaKonputagailuen Arkitektura eta Teknologiatxus.perez@ehu.eus
YURRAMENDI MENDIZABAL, JESUS MARIAEuskal Herriko UnibertsitateaUnibertsitateko Irakaslego TitularraDoktoreaElebidunaKonputazio Zientzia eta Adimen Artifizialayosu.yurramendi@ehu.eus
DORRONSORO IBERO, JOSE RAMONMadrilgo Unibertsitate AutonomoaUnibertsitateko KatedradunaDoktoreajose.dorronsoro@uam.es

Gaitasunak

IzenaPisua
Conocer los principios teóricos y los fundamentos avanzados de la computación estadística, numérica y gráfica, de los sistemas basados en la inteligencia artificial, y de la representación de la información.33.0%
Saber aplicar los fundamentos y avances en computación estadística, numérica y gráfica, en sistemas basados en la inteligencia artificial, y en la representación de la información, para desarrollar sistemas, servicios y aplicaciones informáticas innovadoras, definiendo, evaluando y seleccionando plataformas hardware y software adecuadas.33.0%
Ser capaz de crear nuevos algoritmos y modelos de computación estadística, numérica y gráfica, nuevos paradigmas de inteligencia artificial y nuevas técnicas de representación de la información, analizando su complejidad computacional, demostrando su validez y obteniendo desarrollos tecnológicos.33.0%

Irakaskuntza motak

MotaIkasgelako orduakIkasgelaz kanpoko orduakOrduak guztira
Magistrala304575
Mintegia101525
Ordenagailuko p.203050

Irakaskuntza motak

IzenaOrduakIkasgelako orduen ehunekoa
Aplikazio-tailerrak20.0100%
Azalpenezko eskolak20.0100%
Bideokonferentziak0.0100%
Ikasketa sistematizatua40.00%
Interakzioa irakaslearekin ingurune birtualetan0.030%
Irakaskuntza-taldeak plataforma birtualaren bidez proposatutako jarduerak0.00%
Irakurketa eta analisi praktikoak40.050%
Plataformaren bidez harreman birtualean emandako orduak (foroetan parte hartzea, etab.)0.0100%
Txostenak eta azalpenak lantzea30.030%

Ebaluazio-sistemak

IzenaGutxieneko ponderazioaGehieneko ponderazioa
Bertaratzea eta Parte-hartzea15.0% 25.0%
Azalpenak30.0% 40.0%
Beste batzuk0.0% 10.0%
Foroetan parte hartzea15.0% 25.0%
Lan praktikoak30.0% 40.0%
Urrutiko ebaluazio-probak75.0% 85.0%

Irakasgai-zerrenda

Introducción general a la problemática y nociones básicas

Visualización de una variable y de las relaciones entre variables

Métodos de clasificación no supervisada

Métodos de clasificación supervisada

Métodos de reducción de la dimensionalidad (factoriales)

Combinación de métodos

Bibliografia

Oinarrizko bibliografia

HAND, D., MANNILA, H., SMYTH, P., `Principles of Data Mining¿, MIT Press, 2001.

LEBART L., PIRON M., MORINEAU A., `Statistique exploratoire multidimensionnelle¿, Dunod, 4eme édition, 2006.

HASTIE T., TIBSHIRANI R., FRIEDMAN J., `The Elements of Statistical Learning: Data Mining, Inference, and Prediction¿, Springer Verlag, 2001.

MYATT G.J., `Making Sense of Data: A Practical Guide to Exploratory Data Analysis and Data Mining¿, John Wiley, 2006.

Gehiago sakontzeko bibliografia

ANDERBERG M.R., `Cluster analysis for applications¿, Academic Press, New York, 1973.

HARTIGAN J., `Clustering Algorithms¿, Wiley, 1975,

BREIMAN L., FRIEDMAN J., OLSHEN R., STONE C., `Classification and Regression Trees¿, Wadsworth and Brooks, Monterrey CA, 1984.

QUINLAN J.R, `C4.5: Programs for Machine Learning¿, Morgan Kaufmann, 1992

FAYYAD U., PIATETSKY-SHAPIRO G., SMYTH P., UTHURUSAMY R., (eds.), `Advances in Knowledge Discovery and Data Mining¿, AAAI/MIT Press, 1996.

D. MICHIE, D.J. SPIEGELHALTER, C.C. TAYLOR, (eds), `Machine Learning, Neural and Statistical Classification¿ http://www.amsta.leeds.ac.uk/~charles/statlog

CUADRAS C.M., `Métodos de Análisis Multivariante, 1.edición EUNIBAR, 1981, 2.edición, Promociones y Publicaciones Universitarias, 1991.

ESCOFFIER B., PAGÈS J., `Analyses factorielles simples et multiples¿, Dunod. Versión en español `Análisis factoriales simples y múltiples, Servicio editorial de la UPV/EHU, 1995.

JAMBU, M., LEBEAUX, M.-O `Cluster Analysis and Data Analysis¿., North-Holland, 1983.

JAMBU, M., `Exploration informatique et statistique des données¿, Dunod, 1989.

BERTHOLD M., HAND, D.J., (eds), Intelligent Data Analysis: An Introduction, Springer Verlag, 1999.

CLEVELAND W., 'Visualizing Data', Summit, NJ: Hobart Press, 1993.

CLEVELAND W.,`The Elements of Graphing Data, revised¿, Hobart Press, 1994

WALLGREN A. et alt., 'Graphing Statistics & Data', Sage Publications, 1996.

JACOBY W.G., 'Statistical Graphics for Visualizing Multivariate Data', Sage Publications,

Estekak

www.kdnuggets.com

Iradokizunak eta eskaerak