Gaia

XSLaren edukia

Konputazioa zientzia eta ingeniaritzan: zenbakizko simulazioa

Gaiari buruzko datu orokorrak

Modalitatea
Ikasgelakoa
Hizkuntza
Gaztelania

Irakasgaiaren azalpena eta testuingurua

La simulación numérica de sistemas modelados por medio de ecuaciones diferenciales (tanto ordinarias como en derivadas parciales) es una herramienta sumamente útil en multitud de áreas de la ciencia y la ingeniería.

Cuando la experimentación directa con prototipos reales resulta demasiado cara o incluso imposible de realizar, la simulación numérica suele ser habitualmente la única alternativa. Para poder llevar a cabo tales simulaciones, es necesario hacer uso de algoritmos de resolución numérica de los problemas matemáticos que surge del modelizado de cada problema real, ya sea implementando dichos algoritmos o haciendo uso de software matemático-numérico que facilite la realización de los cálculos necesarios así como la visualización gráfica de los resultados.

Buena parte de los modelos matemáticos utilizados para simular la evolución a lo largo del tiempo de una serie de variables de un sistema se basan en ecuaciones diferenciales ordinarias, y más generalmente ecuaciones diferenciales de evolución temporal. En este curso nos centraremos principalmente en modelos matemáticos de ecuaciones diferenciales ordinaria.

Irakasleak

IzenaErakundeaKategoriaDoktoreaIrakaskuntza-profilaArloaHelbide elektronikoa
ANTOÑANA OTAÑO, MIKELEuskal Herriko UnibertsitateaLan Kontratudun Bitarteko IrakasleaDoktoreaElebidunaMatematika Aplikatuamikel.antonana@ehu.eus
MURUA URIA, ANDEREuskal Herriko UnibertsitateaIrakaslego OsoaDoktoreaElebidunaKonputazio Zientzia eta Adimen Artifizialaander.murua@ehu.eus

Irakaskuntza motak

MotaIkasgelako orduakIkasgelaz kanpoko orduakOrduak guztira
Magistrala304575
Mintegia101525
Ordenagailuko p.203050

Irakaskuntza motak

IzenaOrduakIkasgelako orduen ehunekoa
Banakako eta/edo taldeko lana50.00 %
Eskola magistralak20.0100 %
Prácticas con ordenador, laboratorio, salidas de campo, visitas externas80.050 %

Ebaluazio-sistemak

IzenaGutxieneko ponderazioaGehieneko ponderazioa
Azterketa Praktikoa50.0 % 100.0 %
Etengabeko ebaluazioa, eskoletara joanda0.0 % 10.0 %
Prácticas de ordenador0.0 % 50.0 %

Ohiko deialdia: orientazioak eta uko egitea

El 90% de la calificación de la convocatoria ordinaria se basará en la evaluación de la entrega del trabajo realizado por ordenador cada semana (en un día de la semana prefijado) a modo de examen práctico. Dichos exámenes prácticos consistirán en la realización en el lenguaje julia, en el entorno jupyter, de las tareas indicadas en el enunciado. Cada enunciado se suministrará como un documento jupyter, que será el documento de partida para el documento que cada estudiante entregará al final de la sesión de examen práctico de cada semana. El resto de la calificación se basará en la evaluación continua de la participación activa del estudiante el resto de las sesiones de clases presenciales.

Ezohiko deialdia: orientazioak eta uko egitea

La calificación de la convocatoria extraordinaria se basará en la evaluación de un único examen pŕactico, con una duración máxima a determinar (entre tres y cuatro horas) realizado por ordenador presencialmente. Se tratará de un examen pŕactico del estilo de los realizados cada semana para la calificación de la convocatoria ordinaria, pero de mayor envergadura.

Irakasgai-zerrenda

Tema 1 Algunos ejemplos de problemas de valor inicial modelados por ecuaciones diferenciales y métodos elementales de resolución numérica

Tema 2 Métodos de resolución numérica de ecuaciones diferenciales ordinarias

Tema 3 Aspectos computacionales de la resolución numérica de ecuaciones diferenciales ordinarias

Tema 4 Estabilidad, caos, y ajuste paramétrico

Bibliografia

Nahitaez erabili beharreko materiala

El material obligatorio para la asignatura se ubicará en la plataforma egela de docencia virtual que nos ofrece la Universidad: tutoriales, transparencias, enunciadosde ejercicios, resolución de ejercicios, enlaces, etc.

Oinarrizko bibliografia

- G. Wheatley, Análisis numérico con aplicaciones, Sexta edición, Prentice-Hall, 2000.

- J. H. Mathews, Numerical methods for mathematics, science, and engineering, Second Edition, Prentice-Hall, 1992.

- R. L. Burden & J. Douglas Faires, Analisis Numérico, Grupo Editorial Iberoamericano 1985.

Gehiago sakontzeko bibliografia

- U. M. Ascher, Numerical Methods for Evolutionary Differential Equations (Computational Science and Engeenering), SIAM 2008.

- M. A. McKibben, Discovering Evolution Equations with Applications: Volume 1-Deterministic Equatiations, Chapman & Hall/CRC Applied Mathematics & Nonlinear, 2010.

- E. Hairer, S. P. Nørset, G. Wanner: Solving ordinary di¿erential equations I. Non-sti¿ problems, Second Edition, Springer-Verlag (1993).

- E. Hairer, G. Wanner, Solving ordinary di¿erential equations II. Sti¿ and di¿erential-algebraic problems, Second Edition, Springer-Verlag (1996).

- J. D. Lambert, Numerical Methods for Ordinary Di¿erential Systems. The Initial Value Problem, John Wilaey & Sons, 1991.

Estekak

https://julialang.org/

XSLaren edukia

Iradokizunak eta eskaerak