Materia

Contenido de XSL

Tecnologías Cuánticas

Datos generales de la materia

Modalidad
Presencial
Idioma
Inglés

Profesorado

NombreInstituciónCategoríaDoctor/aPerfil docenteÁreaEmail
BLANCO PILLADO, JOSE JUANUniversidad del País Vasco/Euskal Herriko UnibertsitateaVisitante IkerbaskeDoctorNo bilingüeFísica Teóricajosejuan.blanco@ehu.eus
CASANOVA MARCOS, JORGEUniversidad del País Vasco/Euskal Herriko UnibertsitateaInvestigador Ramón Y CajalDoctorNo bilingüe** n o c o n s t a e l a r e a * ó " á r e a p r o v i s i o n a l"jorge.casanova@ehu.eus
RICO ORTEGA, ENRIQUEUniversidad del País Vasco/Euskal Herriko UnibertsitateaVisitante IkerbaskeDoctorNo bilingüeQuímica Físicaenrique.rico@ehu.eus

Competencias

DenominaciónPeso
Que los estudiantes sean capaces de resolver problemas atinentes a tecnologías cuánticas modernas y futuras70.0 %
Que los estudiantes sean capaces de conocer, de sintetizar y de exponer tanto desarrollos teóricos como análisis del estado de las tecnologías cuánticas relacionadas15.0 %
Que los estudiantes sean capaces de buscar y encontrar información adicional, sintetizar y exponer cuestiones de mediana complejidad y del estatus corriente de tecnologías cuánticas futuras15.0 %

Tipos de docencia

TipoHoras presencialesHoras no presencialesHoras totales
Magistral243256
Seminario81220
P. de Aula81624

Sistemas de evaluación

DenominaciónPonderación mínimaPonderación máxima
Examen Oral50.0 % 50.0 %
Exposiciones15.0 % 50.0 %
Preguntas a desarrollar15.0 % 70.0 %
Trabajos Prácticos50.0 % 50.0 %

Convocatoria ordinaria: orientaciones y renuncia

En caso de que las condiciones sanitarias impidan la realización de

una evaluación presencial, se activará una evaluación no presencial de

la que será informado el alumnado puntualmente.

Temario

I. Ultra-cold atoms in optical lattices, Superconducting quantum technologies



- Quick Review on Optical lattices potentials. 1D optical lattice: a standing wave. Square and cubic lattices. Reminder on band theory. Bloch’s theorem and Bloch’s waves. Band structure. Wannier functions. Very deep lattices: disconnected harmonic wells. Tight-binding limit. Square and cubic lattices. Dynamics of a Bose-Einstein condensate in an optical lattice. Adiabatic loading. Time of flight. Band mapping. Superfluid-Mott insulator transition.



- Single-electron effects. Plasma oscillation. Quantum LC oscillator: harmonic oscillator. Driven LC oscillator. Coherent states. Coupled LC resonators. Bogoliubov transformation. Modes of transmission lines resonators. Semi-infinite transmission lines, dissipation and input/output theory. Superconducting qubits. Quick review of the Josephson effect. The Cooper pair box. Inductively shunted qubits. The 0-pi qubit. Noise and decoherence. Rate equation analysis: two-level systems. Noise induced decoherence in qubit circuits. Density matrix description of decoherence. Circuit QED.





II. NV centers, Trapped ions



- Quantum control. Two-level systems quantum control. The rotating wave approximation. Electron spin resonances. Coherent electron-nucleus couplings. The nitrogen vacancy center in diamond. Quantum sensing and polarization. Dynamical decoupling techniques.



- Quantum information processing.

Trapped ion systems. Laser-driven and microwave-driven setups. Controlled entanglement generation in trapped ions for quantum computing.

Bibliografía

Bibliografía básica

Part I.



R. Grimm et al., Optical dipole traps for neutral atoms, Adv. At. Mol. Opt. Phys. 42, 95 (2000).

G. Grynberg and C. Robilliard, Cold atoms in dissipative optical lattices, Phys. Rep. 355, 335 (2001). I. Bloch et al., Many-body physics with ultracold gases, Rev. Mod. Phys. 80, 885 (2008).

I. Bloch et al., Quantum simulations with ultracold quantum gases, Nat. Phys. 8, 267 (2012).

Makhlin et al., Quantum-state engineering with Josephson-junction devices, Rev. Mod. Phys. 73, 357 (2001).

Blais et al., Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation, Phys. Rev. A 69, 062320 (2004).

Clerk et al., Introduction to quantum noise, measurement and amplification, Rev. Mod. Phys (2008).

M. Devoret, Quantum Fluctuations in Electrical Circuits, Les Houches, Session LXIII 1995, Elsevier 1997.

S. Girvin, Circuit QED: Superconducting Qubits Coupled to Microwave Photons.



Part II.



Malcom H. Levitt, Spin dynamics: Basics of Nuclear Magnetic Resonance (Wiley, 2008).

Nitrogen-Vacancy Centers in Diamond: Nanoscale Sensors for Physics and Biology (2014).

Programmable quantum simulations of spin systems with trapped ions (2021).



Contenido de XSL

Sugerencias y solicitudes