Materia
Teoría de Control
Datos generales de la materia
- Modalidad
- Presencial
- Idioma
- Castellano
Descripción y contextualización de la asignatura
La Teoría Matemática de Control es el área de la matemática con orientación aplicada que estudia los principios matemáticos que subyacen en el análisis y diseño de los sistemas de control. Controlar un objeto significa influir en su comportamiento para alcanzar un objetivo deseado. Para implementar esta influencia los ingenieros construyen artilugios o aparatos que incorporan diversas técnicas matemáticas. Estos aparatos van desde el regulador centrífugo de Watt diseñado durante la revolución industrial en Gran Bretaña, hasta los controladores de sofisticados procesadores que se encuentran en numerosos productos de consumo, como los reproductores de música o vídeo, o en los robots industriales y los pilotos automáticos de los aviones.En esta asignatura se estudian las matemáticas básicas sobre las que se asientan los sistemas de control más elementales: los sistemas de control lineales de dimensión finita. Si bien se hace una pequeña incursión en los sistemas no lineales, es a aquellos a los que se prestará especial atención. Se cubrirán las dos líneas tradicionales de trabajo en teoría de control. Una de ellas está basada en la idea de que siempre hay cierta incertidumbre sobre las restricciones impuestas a los modelos o en el entorno en el que operan los objetos. La herramienta central para corregir las desviaciones del comportamiento deseado es el feedback. La otra presupone que un buen modelo del objeto a ser controlado ya está disponible y que se quiere optimizar su comportamiento en cierto sentido. Ambos aspectos de la teoría de control serán abordados en el desarrollo de la asignatura.
Profesorado
Nombre | Institución | Categoría | Doctor/a | Perfil docente | Área | |
---|---|---|---|---|---|---|
ARMENTIA GALAN, GORKA | Universidad del País Vasco/Euskal Herriko Unibertsitatea | Profesorado Laboral Interino Universidad | Doctor | Bilingüe | Matemática Aplicada | gorka.armentia@ehu.eus |
MARCAIDA BENGOECHEA, SILVIA | Universidad del País Vasco/Euskal Herriko Unibertsitatea | Profesorado Agregado | Doctora | No bilingüe | Matemática Aplicada | silvia.marcaida@ehu.eus |
Competencias
Denominación | Peso |
---|---|
Plantear un modelo matemático que permita describir las principales propiedades de un determinado sistema de control. | 20.0 % |
Analizar el modelo matemático mediante técnicas analíticas y numéricas, y obtener consecuencias sobre el comportamiento dinámico del sistema físico. | 20.0 % |
Simular el comportamiento del sistema utilizando paquetes de software estándar (Matlab, Scilab, Octave,...) | 20.0 % |
Diseñar leyes de control por realimentación para modificar el comportamiento del sistema, por ejemplo, para estabilizarlo. | 20.0 % |
Plantear y resolver problemas de control óptimo. | 20.0 % |
Tipos de docencia
Tipo | Horas presenciales | Horas no presenciales | Horas totales |
---|---|---|---|
Magistral | 24 | 36 | 60 |
Seminario | 4 | 12 | 16 |
P. de Aula | 8 | 18 | 26 |
P. Ordenador | 24 | 24 | 48 |
Actividades formativas
Denominación | Horas | Porcentaje de presencialidad |
---|---|---|
Análisis de casos | 10.0 | 0 % |
Clases magistrales | 24.0 | 100 % |
Debates | 6.0 | 25 % |
Ejercicios | 10.0 | 0 % |
Lecturas | 10.0 | 0 % |
Prácticas de aula | 14.0 | 25 % |
Prácticas de ordenador | 48.0 | 50 % |
Seminarios | 4.0 | 100 % |
Trabajo en grupo | 18.0 | 0 % |
Tutorías | 6.0 | 50 % |
Sistemas de evaluación
Denominación | Ponderación mínima | Ponderación máxima |
---|---|---|
Se valorará la asistencia y la respuesta a las actividades y ejercicios propuestos en clase. | 20.0 % | 40.0 % |
Trabajos Prácticos | 60.0 % | 80.0 % |
Convocatoria ordinaria: orientaciones y renuncia
CRITERIOS DE LA EVALUACIÓN CONTINUA:Resolución de una serie de ejercicios de forma individual con la orientación y apoyo de los profesores: 20%
Realización de prácticas de ordenador con MATLAB: 10%
Resolución de un conjunto limitado de problemas-proyectos en los que el o la estudiante deberá poner de manifiesto que ha adquirido los conceptos fundamentales desarrollados en la asignatura. Algunos de estos problemas podrán ser enunciados como proyectos que interrelacionen diversas partes de la misma (70%).
CRITERIOS DE LA EVALUACIÓN FINAL: Las o los estudiantes que lo soliciten podrán ejercer su derecho a una evaluación final que consistirá en la entrega de una selección de ejercicios resueltos de cada uno de los temas, la realización (en las horas de clase habilitadas al efecto o, si tiene dispensa, por su cuenta) de unas prácticas de ordenador con MATLAB y en la resolución de un conjunto limitado de problemas-proyectos en los que deberá poner de manifiesto que ha adquirido los conceptos fundamentales desarrollados en la asignatura.
RENUNCIA:
El alumnado que haya realizado las actividades a lo largo del curso, pero no se presente a la convocatoria ordinaria, será calificado como No presentado/a.
Convocatoria extraordinaria: orientaciones y renuncia
Los criterios de evaluación serán los mismos que en la convocatoria ordinaria. La evaluación de las actividades realizadas a lo largo del curso (prácticas de ordenador y ejercicios) será válida para las dos convocatorias del curso. En consecuencia, el alumnado que haya superado estas actividades a lo largo del curso, en la convocatoria extraordinaria solo tendrá que resolver los problemas-proyecto de final de asignatura. En el caso del alumnado que no haya superado la evaluación de dichas actividades o haya elegido la modalidad de evaluación final, en la convocatoria extraordinaria deberá realizar el mismo tipo de pruebas que en la evaluación final ordinaria.Temario
1. Introducción: ¿Qué es control?2. Modelización de algunos sistemas de control: ejemplos y aplicaciones.
3. Una introducción al control clásico: funciones de transferencia y diagramas de bloques. El Control Toolbox de MATLAB.
4. El modelo de espacio-estado: sistemas lineales y su respuesta a las funciones básicas. Uso de MATLAB para analizar dichas respuestas.
5. Comportamiento dinámico, estabilidad: estabilidad entrada salida de los sistemas lineales, la matriz de transferencia, estabilidad interna, estabilidad de los sistemas no lineales por linealización.
6. Controlabilidad y observabilidad, estabilización: criterios para la controlabilidad y observabilidad de los sistemas lineales, feedback de estados, estabilización por feedback, controlabilidad de sistemas no lineales por linealización.
7. Introducción al control óptimo: programación dinámica, el problema del regulador cuadrático lineal, el principio del máximo de Pontryagin.
Bibliografía
Materiales de uso obligatorio
Apuntes y prácticas de la asignatura "Teoría de Control" publicados egela.Bibliografía básica
K. J. Aström, R. M. Murray, Feedback Systems: An Introduction for Scientists and Engineers, Princeton University Press, 2012.C. Heij, A. Ran, F. van Schagen, Introduction to Mathematical Systems Theory: Linear Systems, Identification and Control, Birkhäuser, 2000.
Revistas
AutomaticaInternational Journal of Control
Mathematics of Control, Signals, and Systems
SIAM Journal on Control and Optimization
Enlaces
Wikibook: Control Systems: http://en.wikibooks.org/wiki/Control_Systems.http://ocw.mit.edu/courses/aeronautics-and-astronautics/16-07-dynamics-fall-2009/lecture-notes/MIT16_07F09_Lec26.pdf.
http://www.electronics-tutorials.ws/opamp/opamp_4.html.
http://www.sediabetes.org/gestor/upload/revistaAvances/24-4.pdf#page=38.
http://es.wikipedia.org/wiki/Motor_de_corriente_continua.
https://www.physicsforums.com/threads/the-dirac-delta-function.73447/