Materia

Contenido de XSL

Modelado dinámico de fuentes de generación distribuida

Datos generales de la materia

Modalidad
Presencial
Idioma
Inglés

Descripción y contextualización de la asignatura

Distributed generation, also called on-site generation or decentralized generation, is the term for generation of electricity from sources that are near the point of consumption, as opposed to centralized generation sources such as large utility-owned power plants.

Common distributed generation systems (DGS) include: Solar photovoltaic panels, small wind turbines, natural gas or hydrogen-fired fuel cells, combined heat and power (CHP) systems, biomass combustion, internal combustion (IC) small systems, gas microturbines, micro hydropower and marine energy.



Various technical and economic issues occur in the integration of these resources into a grid. Technical problems arise in the areas of power quality, voltage stability, harmonics, reliability, protection, and control. In order to face all these problems, good knowledge and modeling of DGSs for a subsequent management and control is a key matter.



In this subject some of the most common DGSs will be studied in order to develop the models that will allow to study the performance of them under dynamic situations.



In the event that the sanitary conditions prevent the realization of a teaching activity and / or face-to-face evaluation, a non-face-to-face modality will be activated of which the students will be informed promptly.



Profesorado

NombreInstituciónCategoríaDoctor/aPerfil docenteÁreaEmail
ALBIZU FLOREZ, IGORUniversidad del País Vasco/Euskal Herriko UnibertsitateaProfesorado Titular De UniversidadDoctorBilingüeIngeniería Eléctricaigor.albizu@ehu.eus
UGARTEMENDIA DE LA IGLESIA, JUAN JOSEUniversidad del País Vasco/Euskal Herriko UnibertsitateaProfesorado Colaborador De Escuela UniversitariaDoctorBilingüeIngeniería Eléctricajuanjo.ugartemendia@ehu.eus

Competencias

DenominaciónPeso
Que los estudiantes tengan conocimiento actualizado sobre las técnicas y metodologías de trabajo avanzadas relacionadas con el ámbito de las Smartgrids y la Generación Distribuida, en particular desde el punto de vista de su control.5.0 %
Conocer y aplicar los conceptos y especificaciones de las Smartgrids, sus topologías, sus componentes constitutivos, así como su dimensionamiento básico.5.0 %
Establecer modelos dinámicos de los distintos componentes de las Smartgrids, en particular diferentes unidades de Generación Distribuida.40.0 %
Diseñar leyes de control a nivel local de diferentes componentes de Smartgrids, en particular unidades de Generación Distribuida.5.0 %
Evaluar y validar modelos y controladores de distintos componentes de las Smartgrids, mediante simulaciones y ensayos experimentales, empleando distintas herramientas informáticas y prototipos.30.0 %
Que los estudiantes estén capacitados para comunicarse sobre trabajos realizados en colaboración en equipos multidisciplinares y multilingües nacionales e internacionales formados por profesionales e investigadores que trabajen en el ámbito de las Smartgrids.10.0 %
Que los estudiantes estén capacitados para comprender y analizar documentos técnicos, normas y artículos científicos en la temática del Máster, así como para aplicarlos en el desarrollo de trabajos e investigaciones relacionados con el ámbito de las Smartgrids.5.0 %

Tipos de docencia

TipoHoras presencialesHoras no presencialesHoras totales
Magistral101525
P. de Aula101525
P. Ordenador101525

Actividades formativas

DenominaciónHorasPorcentaje de presencialidad
Clases expositivas14.0100 %
Ejercicios6.033 %
Elaboración de informes y exposiciones15.010 %
Estudio sistematizado20.00 %
Exposición de proyectos0.00 %
Resolución de casos prácticos20.060 %

Sistemas de evaluación

DenominaciónPonderación mínimaPonderación máxima
Examen escrito30.0 % 70.0 %
Exposiciones0.0 % 20.0 %
Preguntas a desarrollar5.0 % 20.0 %
Trabajos Prácticos20.0 % 70.0 %

Convocatoria ordinaria: orientaciones y renuncia

CONTINUOUS EVALUATION SYSTEM:

The evaluation is of ongoing type. It is why it is compulsory to be present in class. The subject is assessed mainly from 4 different activities, according to next weighting:

Preparation of flipped classroom sessions: 10%

Individual exercises and practical cases during the course: 30%

Reports of applied laboratory practices: 20%

Final exam: 40%

In order to enhance the learning of theoretical knowledge, some of the lectures will be ordered with flipped classroom sessions, where students will be more actively involved in the acquisition of theoretical knowledge. Based on the didactic material provided by the lecturer (documents, videos, web pages, etc), it will be the student who will start learning by himself/herself previously the lectures of each topic.

During the course, students must solve proposed exercises, practical cases and make written reports. This will allow a follow-up of the learning process of the students and a continuous evaluation. Students who do not submit the exercises, practical cases and reports will be evaluated with a zero in these activities.

The exam of the ordinary call will count for 40% of the final mark. In order to be able to do the average of the subject with the remaining parts, it will be compulsory to obtain a minimum of 4 in this exam.

Declining to sit: not attending the final exam in the ordinary call will imply declining to sit said exam. In this case, the grade will be "Non Attendance".

A minimum mark of 5 is required to pass the course.



FINAL EVALUATION SYSTEM:

According to Chapter II, Article 8 of the Evaluation Regulations which regulates the assessment of students in the official degrees, the students shall have the right to be evaluated by means of the FINAL EVALUATION SYSTEM, independently of the fact that has or has not participated in the CONTINUOUS EVALUATION SYSTEM. In order to do so, interested students must submit a written waiver of continuous evaluation to the lecturer in charge of the subject NO LATER THAN 3 WEEKS PRIOR TO THE DATE OF THE FINAL EXAM. In this case, the student will be assessed with a single final exam. This final evaluation test will consist on AN ORAL EXAM related to the skills that the students have to acquire in the subject.



RENUNCIATION

Declining to sit: not attending the final exam in the ordinary call will imply declining to sit said exam. In this case, the grade will be "Non Attendance".

Convocatoria extraordinaria: orientaciones y renuncia

The criteria and weighting of this call will be the same as that of the ordinary call.



RENUNCIATION

Declining to sit: not attending the final exam in the extraordinary call will imply declining to sit said exam. In this case, the grade will be "Non Attendance".

Temario

Modelado dinámico, testeo simulado y experimental de placas fotovoltaicas.

Modelado dinámico, testeo simulado y experimental de pilas de combustible.

Modelado dinámico y simulación del sistema micro-hidráulico.

Modelado dinámico, testeo simulado y experimental del grupo diésel-alternador.

Modelado dinámico, simulación y ensayos experimentales de energías marinas.

Bibliografía

Materiales de uso obligatorio

Documentation uploaded to the web page of the subject. Accessible at: https://egela.ehu.eus/login/index.php

Bibliografía básica

R.A. Messenger, A. Abtahi. Photovoltaic Systems Engineering CRC Press New York 2017.

G. Petrone, C.A. Ramos-Paja, G. Spaguolo. Photovoltaic Systms Modeling. John Wiley 2017.

J. Larminie, A. Dicks. Fuel Cell Systems Explained. John Wiley 2003.

H. Nehrir, C. Wang. Modeling and Control of Fuel Cells: Distributed Generation Applications. John Wiley 2009.

A. Pecher, J.P. Kofoed. Handbook of Ocean Wave Energy. Springer 2017

M. Folley. Numerical modeling of Wave Energy Converters. Elsevier 2016

Bibliografía de profundización

T. Markvart, L. Castañer. Practical handbook of photovoltaics: fundamentals and applications. Ed. Elsevier, Oxford: 2003.







L. Castañer, S. Silvestre. Modelling Photovoltaic Systems using Pspice. Ed. John Wiley & sons, Ltd, Chichester: 2002.







G. D.J. Harper. Fuel cell projects for the evil genius. Ed. Mc Graw Hill, New York: 2008.







K. Z. Yao et. al. A review of mathematical models for hydrogen and direct methanol polymer electrolyte membrane fuel cells. Fuel Cells, vol. 4, no. 1-2, pp. 3-29, Weinheim: 2004.







RETScreen International (Clean energy decision support centre). Small hydro project analisys chapter. Minister od Natural Resources of Canada: 2001-2004.







H. Fang et al. Basic Modeling and Simulation Tool for Analysis of Hydraulic Transients in Hydroelectric Power Plants. Trans. on energy Conversion, vol 23, no 3, pp. 834-841, 2008.







C. Li, J. Zhou. Parameters identification of hydraulic turbine governing system using improved gravitational search algorithm. Energy Conversion and Management, vol. 52, pp. 374-381, 2011.







D. Andrews. National Grid's use of emergency diesel standby generators in dealing with grid intermittency, Open Iniversity Conference on Intermittency, 2006.







Falnes J. A review of wave-energy extraction. Marine Structures, 2007







Cummins, WE. The Impulse Response Function and Ship Motions. Schiffstechnik, vol 9, pp. 101-109, 1962.



Revistas

Renewable Energy (Elsevier)



Applied Energy (Elsevier)



Photovoltaics Bulletin (Elsevier)



Fuel Cells Bulletin (Elsevier)



IEEE Journal of Photovoltaics



IET Renewable Power Generation



IEEE Transactions on Energy Conversion



IEEE Transactions on Industrial Electronics



Enlaces

https://www.energy.gov/eere/fuelcells/fuel-cells



https://www.nrel.gov/



https://www.renewableenergyworld.com/hydrogen/tech.html



https://www.fuelcellenergy.com/



https://www.energy.gov/eere/solar/articles/solar-photovoltaic-system-design-basics



https://www.renewableenergyworld.com/solar-energy/tech/solarpv.html



https://energyeducation.ca/encyclopedia/Photovoltaic_system



https://science.nasa.gov/researchers



https://www.energy.gov/energysaver/buying-and-making-electricity/microhydropower-systems



https://www.backwoodssolar.com/products/microhydro-power



https://www.wbdg.org/resources/microturbines



https://www.intechopen.com/books/progress-in-gas-turbine-performance/micro-gas-turbine-engine-a-review



https://www.hydro.org/waterpower/marine-energy/



http://www.emec.org.uk/marine-energy/



https://www.modelica.org/



https://modelica.org/publications



https://www.openmodelica.org/



https://mbe.modelica.university/



Contenido de XSL

Sugerencias y solicitudes